首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
根据题设条件和题意要求 ,巧构函数 ,活用函数的单调性 ,实现问题转化 .由此 ,既可简化运算过程 ,又可明快证明结论 ;既可探索解题捷径 ,又可发现解题方法 .本文就此举例探究 .1 构造函数方程例 1 解方程 4x +2 -7-x +3 =0解 :由观察可知 ,x的取值范围为 :-2≤ x≤ 7令 F ( x) =4x +2 -7-x +3 ,因为在区间 [-2 ,7]上 ,f ( x) =4x +2单调递增 ,g( x) =7-x单调递减 .所以 F ( x) =4x +2 -7-x +3在 [-2 ,7]上单调递增 ,又 F ( -2 ) =0 ,所以由函数单调性可知 ,原方程的解为 x =-2 .2 构造函数解不等式例 2 解不等式 3 x +1>3 -x解 :构造…  相似文献   

2.
在解方程 (组 )的过程中 ,如能巧妙构造函数 ,往往能化难为易 ,出奇制胜 ,达到事半功倍之效 .例 1 解方程 (x2 - 2 0x 38) 3 =x3 - 4x2 84x - 15 2 .分析高中阶段解高次方程只有通过降次才可解 ,如何降次呢 ?文华点精  本例抓住题目特点 ,通过构造函数将高次方程化归为二次方程 ,是一种常用方法 .  解 :原方程变形为 (x2 - 2 0x 38) 3 4(x2 - 2 0x 38) =x3 4x ,构造函数f(x) =x3 4x ,原方程即为 f(x2 - 2 0x 38)=f(x) ,易证得f(x)在R上单调递增 ,所以x2 - 2 0x 38=x ,故x =2或x =19.文华点精  本例通过构造函数再结合分类讨…  相似文献   

3.
定理设f(x)为单调奇函数,则方程f(ax+b)+f(x)一O与方程(a二十b)十x一O同解. 证明由f(一二)~一f(x),则方程厂(ax十b)+f(x)一。可化为f(ax+b)~f(一x)‘又f(二)为单调函数,f为一一映射,故f(ax+b)一f(一x)成立的充要条件是ax+b-一x.证毕. (编者按:只是在实数范围内同解.) 例1.解方程 (x+6)工,91+x‘,,‘+Zx+6=0.‘._’解f(x)一x,‘+x为递增奇函数.故有(x十6)+x一O,原方程有唯一实根x-一3. 例2.解方程 (Zx+1)(z+丫(Zx+1),+3 +sx(2+了石压不万)一0. 解令t一3x,则原方程变为(亏+‘)(“+ +,(z+丫砰不压):考虑函数f(t)=t(2+奇函数,原方程化为了砰…  相似文献   

4.
对某些函数来说,其单调性并不难应用简单的方法加以确定,而这些函数的单调性又为解某些数学问题提供了依据,本文试举数例,以示应用函数的单调性在解方程,求解不等式及证明不等式中的应用。例1 在实数范围内解方程4((x+2)(1/2))-(7-x)(1/2)+3=0。解:易知方程中x的取值范围是-2≤x≤7。在此区间上,f(x)=4(x+2)(1/2)是增函数,g(x)=(7-x)(1/2)是减函数,故F(x)=4((x+2)(1/2))-(7-x)(1/2)是增函数,又F(-2)+3=0,故应用F(x)的单调性  相似文献   

5.
解数学题 ,选择解题方法是个值得重视的问题 ,方法选得好 ,既使思路清晰又使过程简捷 ,达到事半功倍的目的 .本文介绍几种解方程的技巧 ,供教学时参考 .1 函数思想函数思想解方程 ,一般是将方程转化为函数 ,从而利用函数的有关性质使问题得到解决 .例 1 解方程 :( 6x + 5 ) [1 + ( 6x + 5 ) 2 + 4]+x( 1 +x2 + 4) =0 ( 1 990年福州市高中竞赛题 ) .解 :观察方程左边 ,两项具有相同的结构特征 ,故可设 f(x) =x( 1 + x2 + 4) (x∈R) ,则f(x)是R上的增函数 .∵ f( -x) =-x( 1 +x2 + 4) =-f(x) ,∴ f(x)是奇函数 ,又因为方程可变为( 6x + 5 )…  相似文献   

6.
一、运用算术平方根的性质例1 解方程解: 原方程无解. 二、运用配方法例2解方程x2-4x+5=0. 解:原方程可化为x2-4x+4=-1.  相似文献   

7.
导数是高中数学新教材的内容,它作为解题有力的工具使某些问题的求解变得简便.本文选取2004年全国的高考试题,举例介绍应用导数解答高考题的常见类型,供大家参考.  一、求曲线的切线例1  曲线 y=x3 -3x2 +1 在点(1,-1)处的切线方程为(  ).A.y=3x-4    B.y=-3x+2C.y=-4x+3 D.y=4x-5解析  由函数 f(x)=x3 -3x2 +1 导数为f′(x)=3x2-6x,f′(1)=-3,因此得(1,-1)处的切线方程为:y-(-1)=-3(x-1),即y=-3x+2.二、研究函数的单调性例2  已知a∈R,求函数 f(x)=x2eax 的单调区间.解析  函数 f(x)的导数 f′(x)= 2xeax +ax2e…  相似文献   

8.
数学思想是研究和解决数学问题和有关实际问题的基本指导思想.求解数学问题时,若能正确地运用数学思想,则可提高解题效率.本文举例介绍在求解三角问题时的常用数学思想.一、函数思想例1已知x3+sinx-2a=0,x∈[-π2,π2],4y3+sinycosy+a=0,y∈[-π4,π4],求sin(x+2y)的值.分析:从已知条件所具有的特征出发,可构造一个新的函数f(x)=x3+sinx,利用该函数的单调性,找出x与2y的关系,从而获得解答.解:令函数f(x)=x3+sinx,由x3+sinx-2a=0,得2a=x3+sinx=f(x).又由4y3+sinycosy+a=0,得2a=-8y3-2sinycosy=(-2y)3+sin(-2y)=f(-2y),∴f(x)=f(-2y),∵x,-2y…  相似文献   

9.
随着导数内容进入新教材,函数的研究范围也随之扩大,用导数的方法研究三次函数的性质,不仅方便实用,而且三次函数的性质变得十分明朗,本文给出三次函数的三大主要性质.1单调性三次函数f(x)=ax3+bx2+cx+d(a>0).(1)若b2-3ac≤0,则f(x)在(-∞,+∞)上为增函数;(2)若b2-3ac>0,则f(x)在(-∞,x1)和(x2,+∞)上为增函数,f(x)在(x1,x2)上为减函数,其中x1=-b-3ab2-3ac,x2=-b+3ab2-3ac.证明f′(x)=3ax2+2bx+c,Δ=4b2-12ac=4(b2-3ac).(1)当Δ≤0,即b2-3ac≤0时,f′(x)≥0在R上恒成立,即f(x)在(-∞,+∞)为增函数.(2)当Δ>0,即b2-3ac>0时,解方程f′(x)=0,…  相似文献   

10.
由于三次函数f(x)=ax3+bx2+cx+d(a>0)的导数是二次函数,二次函数是高中数学中的重要内容,所以三次函数的问题已成为高考命题的一个新的热点和亮点.1三次函数的性质1.1三次函数的单调性因为f′(x)=3ax2+2bx+c,所以方程f′(x)=0中,Δ=4b2-12ac=4(b2-3ac),于是:(1)当b2-3ac>0时,方程f′(x)=0有两个不同的实数根x1,x2(不妨设x1相似文献   

11.
一、化简、求值例1化简26√2√+3√+5√.解:原式=2·2√·3√2√+3√+5√=(2√+3√)2-(5√)22√+3√+5√=(2√+3√+5√)(2√+3√-5√)2√+3√+5√=2√+3√-5√.例2若x4+1x4=2,求x+1x的值.解:由x4+1x4=2,配方,得(x2+1x2)2=4,所以x2+1x2=2.再配方,得(x+1x)2=4,所以x+1x=±2.二、分解因式例3分解因式x4+4.解:原式=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).□郭安才三、解方程(组)例4解方程2x2+3y2-4xy-6y+9=0.解:原方程可变形为2(x-y)2+(y-3)2=0,∵2(x-y)2≥0,(y-3)2≥0,∴只有x-y=0,y-3=0时,原方程成立.解得x=3,y=3.故原方程的解是x=3,…  相似文献   

12.
函数的奇偶性不只给函数的作图和研究函数的其他性质带来方便,而且在解题中还有奇妙的作用。 [例1] 已知:实数x,y满足(3x+y)~5+x~5+4x+y=0。求证:4x+y=0。证明:已知的等式即是(3x+y)~5+3x+y=-(x~5+x), ①设f(x)=x~5+x,则①式化为f(3x+y)=-f(x)。显然,f(x)是奇函数,从而由上式得f(3x+y)=f(-x)。②又f(x)在R上单调上升,且对应法则f是R到R的一一对应,故②式等价于3x+y=-x。∴ 4x+y=0。 [例2] 解方程  相似文献   

13.
下面以具体的问题来体现函数单调性的妙用,供大家欣赏.一、考虑函数最值【例1】 求函数f(x)=x3-3x2+5x+1,x∈[-1,1]的最值.分析:对于这个问题许多学生感到为难,但如果从单调性入手则会充分显现其优越性.由f(x)=x3-3x2+5x+1的特点易知f(x)可变形成f(x)=(x-1)3+2(x-1)+4,则可设t=x-1,则函数f(x)可变成y=t3+2t+4,t∈[-2,0],所以要求原函数的最值只要求y=t3+2t+4,t∈[-2,0]的最值,易证y=t3+2t+4,t∈[-2,0]是单调递增函数,所以当t=-2时此函数有最小值为-8,当t=0时此函数有最大值为4,从而当x=-1时,原函数有最小值为-8,当x=1时,原函数有最大值为4.…  相似文献   

14.
一元三次函数f(x) =ax3+bx2 +cx+d的图象可分为两类 :一类是在整个定义域内是单调的 ,无极值 ,其形状与 f(x) =±x3类似 .另一类是在整个定义域内有 3个单调区间(两增一减或两减一增 ) ,必有一个极大值和一个极小值 .具体分析如下 :设方程 f′(x) =3ax2 + 2bx +c =0的判别式为Δ ,Δ >0时方程的两实根记为x1 ,x2 (x1 0 ,Δ >0时 ,函数的单调增区间为 (-∞ ,x1 ) ,(x2 ,+∞ ) ,单调减区间为[x1 ,x2 ] ,在x1 处取得极大值 ,在x2 处取得极小值 .图象如图 1,呈倒“S” .(2 )当a >0 ,Δ≤ 0时 ,函数在 (-∞ ,+∞ )上单调递增 ,无…  相似文献   

15.
众所周知 ,“根与系数的关系”的应用之一是构造方程 ,但它不是构造方程的惟一方法 ,本文举例介绍构造方程的另两种方法 ,供同学们参考。例 1 求作一方程 ,使它的各根分别是方程x2 - 3x + 2 =0的各根的 3倍。解法一 :设所求方程的未知数为 y。由题意 ,得 y =3x ,即x =y3,代入原方程 ,得 ( y3) 2 - 3·y3+ 2 =0整理 ,得 y2 - 9y + 1 8=0 .解法二 :设所求方程为 y2 + py + q =0 ,由题意 ,得 y =3x ,∴ ( 3x) 2 + 3px + q =0 ,即 9x2 + 3px + q =0 .此方程与原方程是同解方程 ,∴19=- 33p =2q,∴p =- 9,q =1 8.则所求作方程为 y2 - 9y + 1 8=0…  相似文献   

16.
阅读理解能力是初中数学课程追求的重要目标之一.本文特选了几例与方程有关的阅读理解题,供参考.一、阅读解题过程,总结思想方法例1阅读下面的材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2.原方程化为y2-5y+4=0①.解得y1=1,y2=4.当y=1时,x2-1=1,∴x=±2;当y=4时,x2-1=4,∴x=±5.∴原方程的解为x1=2,x2=-2,x3=5,x4=-5.解答问题:(1)填空:在由方程得到①y2-5y+4=0的过程中,利用法达到了降次的目的,体现了的数学思想.(2)解方程(x2-x)2-4(x2-x)-12=0,若设y=x2-x,则原方程可化为.解(1)换元:转化;(2)y2…  相似文献   

17.
<正>从近几年的高考来看,有关函数零点个数问题的高考试题层出不穷,对解决此类问题的能力考查力度也逐步加大.以下结合实例探讨判断函数零点个数的策略.一、利用解方程判断函数零点个数例1(2010年福建高考题)函数f(x)=x2+2x-3,x≤0,-2+ln x,x>{0的零点个数为()(A)0(B)1(C)2(D)3解当x≤0时,令x2+2x-3,x≤0,-2+ln x,x>{0的零点个数为()(A)0(B)1(C)2(D)3解当x≤0时,令x2+2x-3=0,解得x=-3;当x>0时,令-2+ln x=0,解得x=e2+2x-3=0,解得x=-3;当x>0时,令-2+ln x=0,解得x=e2.所以f(x)有两个零点,故选C.二、利用函数图象判断函数零点个数  相似文献   

18.
设三次函数f(x)=ax3+bx2+cx+d(a≠0),其导函数f'(x)=3ax2+2bx+c的判别式为△=4ab2-12ac,则有以下性质。1.△≤0时,三次函数f(x)在R上是单调函数。(1)当△≤0且a>0时,函数f(x)在R上单调递增。(2)当△≤0且a<0时,函数f(x)在R上单调递减。它们的图象如下图1、2。例说三次函数图象性质的应用$昆明三中@张邦宁  相似文献   

19.
三次方程的根的个数,该如何求呢?利用导数,便可以解决.下面讨论:方程ax3 bx2 cx d=0(a>0)的根.分析:函数y=ax3 bx2 cx d的图象与x轴有几个交点,方程便有几个根.解:由题意得:f′(x)=3ax2 2bx c∵a>0∴y=f′(x)图象开口向上,且Δ=4b2-12ac(1)当Δ>0时,即4b2-12ac>0,b2>3ac时∴方程f′(x)=0有两个不同的实根,x1,x2不妨设x1x2时f′(x)>0,x1相似文献   

20.
在初中代数的习题中 ,常会遇到一些特殊的高次方程 ,如用常规方法来解 ,过程一般较为繁琐 ,且容易出错。现例举出来 ,供同学们参考。一、中值变换例 1 解方程 :x4+ (x - 2 ) 4 =82 .分析 :直接展开较繁 ,取x与 (x - 2 )的算术平均数设为 y ,进行中值变换。解 :令x - 1 =y ,则原方程变为 :( y + 1 ) 4 + ( y - 1 ) 4 =82展开合并得2 y4+ 1 2 y2 + 2 =82 即 y4+ 6y2 - 40 =0∴ ( y2 + 1 0 ) ( y2 - 4) =0∴y2 =- 1 0 (舍去 ) ,y2 =4 ∴y =± 2∴x - 1 =± 2 ∴x1 =3 x2 =- 1二、倒数变换例 2 解方程 :x4- 3x3- 2x2 - 3x + 1 =0 .分析 :…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号