首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
An event-triggered leader-following consensus problem for multi-agent systems with nonlinear dynamics was investigated in this study. The interaction topologies among the agents that we considered are randomly switched ones, governed by a semi-Markov process with partially unknown rates. By building the state error model between the leader and followers, the consensus problem is first converted into a stability problem. Moreover, an event-triggered transmission scheme based on sampling data was proposed to reduce communication redundancy. The consensus controller and event-triggered parameters can be designed effectively. By constructing a Lyapunov–Krasovskii functional (LKF) with a triple integral, the sufficient conditions required to guarantee the event-triggered consensus can be reached with respect to the linear matrix inequalities (LMIs). Ultimately, the validity of the theoretical results is demonstrated by a numerical example.  相似文献   

2.
This paper investigates the bipartite leader-following consensus of second-order multi-agent systems with signed digraph topology. To significantly reduce the communication burden, an event-triggered control algorithm is proposed to solve the bipartite leader-following consensus problem, where a novel event-triggered function is designed. Under some mild assumptions on the network topology and node dynamics, a sufficient condition is derived using Lyapunov stability method and matrix theory to guarantee the bipartite consensus. In particular, it is shown that the continuous communication can be avoided and the Zeno-behavior can be excluded for the designed event-triggered algorithm. Numerical simulations are presented to illustrate the correctness of the theoretical analysis.  相似文献   

3.
This paper considers the event-triggered leaderless and leader-following consensus problems for linear multi-agent systems. By introducing event-triggered estimators, two novel control schemes are proposed. Different from the existing event-triggered controllers, which rely on the Fiedler eigenvalue of Laplacian matrix, the developed controllers only use the information from neighboring agents. Meanwhile, the adaptive trigger parameters are designed in the event-triggered mechanisms to improve the self-regulation ability of the event-triggered estimators. In addition, the leaderless consensus and the leader-following consensus can be achieved under the corresponding control protocols. Finally, two simulation examples are given to illustrate the validity of the proposed control protocols.  相似文献   

4.
This article investigates the leader-following successive lag consensus (SLC) for nonlinear multi-agent systems (NMASs) via the observer-based event-triggered control (OBETC), in which two scenarios including constant consensus delay and time-varying consensus delay are considered. Since the system states might not be directly available in actual scenes, the state estimation method is utilized for followers to track their full information. Based on the relative state, a class of distributed event-triggered control protocols is constructed, where the event-triggered strategy is introduced such that each follower can determine the broadcasting time to its neighbors. Obviously, these designed control protocols considerably lessen the expense over communication networks and the frequency of protocol updates. Furthermore, with the aid of the Lyapunov function method, a series of sufficient conditions for guaranteeing the leader-following SLC of NMASs is obtained. Meanwhile, it is proved that no Zeno behavior is exhibited. Finally, several numerical examples are given to illustrate the validity of our theoretical results.  相似文献   

5.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

6.
The problem of event-triggered leader-following consensus control for semi-Markov multi-agent systems is investigated in this paper. A semi-Markov process is used to describe the sudden parameter changes between every agent. An adaptive event-triggered control strategy is proposed to make a balance between reducing unnecessary communication and meeting the required performance. A control protocol which can resist actuator faults is used to ensure the reliable leader-following consensus. By employing the Lyapunov–Krasovskii functional method, some sufficient conditions are provided to guarantee that the leader-following consensus can be achieved in mean-square sense. The consensus controller and the event-triggered parameter can be co-designed. Finally, the effectiveness of the proposed method is verified by a F-404 aircraft engine system.  相似文献   

7.
This study discusses the finite-time consensus for the second-order leader-following nonlinear multi-agent system with event-triggered communication. An event-triggered control protocol is established to achieve finite-time consensus, which can effectively avoid the Zeno behavior. Due to the unevenness of an event-triggered controller and the occurrence of the event-triggered condition, it is more challenging to analyze the event-triggered finite-time consensus. Based on the knowledge of graph theory, all agents can achieve finite-time consensus via the proposed event-triggered control protocol. Different from homogeneity, a Lyapunov function is constructed to obtain the settling time. Finally, a simulation example illustrates the validity of the main results.  相似文献   

8.
The leader-following consensus problems for multi-agent systems with a linear and Lipschitz nonlinear dynamics are considered. Distributed adaptive protocols and Lipschitz distributed adaptive protocols are respectively designed for the linear and Lipschitz nonlinear cases, under which leader-following consensus is reached for jointly connected topology. Finally, a simulation example is provided to illustrate the theoretical results.  相似文献   

9.
In this paper, the problem of fuzzy model-based leader-following consensus control for multi-agent systems (MASs) under deception attacks is investigated. For the sake of alleviating the communication burden, a novel memory-based event-triggered scheme (METS) is first proposed for the considered MASs to reduce redundant data transmission, and the leader-following consensus can be achieved faster with a smaller adjustment error by applying the historical released packets. Considering the designed METS and upper-bounded attacks synthetically, the closed-loop fuzzy system model is well established. Furthermore, with the help of Lyapunov-Krasovskii technique, some sufficient conditions are derived to ensure the consensus of MASs subject to deception attacks. Finally, a simulation example is introduced to manifest the effectiveness of the proposed method.  相似文献   

10.
This paper focuses on designing a leader-following event-triggered control scheme for a category of multi-agent systems with nonlinear dynamics and signed graph topology. First, an event-triggered controller is proposed for each agent to achieve fixed-time bipartite consensus. Then, it is shown that the Zeno-behavior is rejected in the proposed algorithm. To avoid intensive chattering due to the discontinuous controller, the control protocol is improved by estimating the sign function. Moreover, a triggering function is proposed which avoids continuous communication in the event-based strategy. Finally, numerical simulations are given to show the accuracy of the theoretical results.  相似文献   

11.
This paper investigates the observer-based consensus control for high-order nonlinear multi-agent systems (MASs) under denial-of-service (DoS) attacks. When the DoS attacks appear, the communication channels are destroyed, and the blocked information may ruin the consensus of MASs. A switched state observer is designed for the followers to observe the leader’s state whether the DoS attacks occur or not. Then, a dynamic event-triggered condition is proposed to reduce the consumption of communication resources. Moreover, an observer-based and dynamic event-triggered controller is formulated to achieve leader-following consensus through the back-stepping method. Additionally, the boundedness of all closed-loop signals is obtained based on the Lyapunov stability theory. Finally, the simulation results demonstrate the effectiveness of the presented control strategy under DoS attacks.  相似文献   

12.
This paper studies the event-triggered consensus control problem for high-order uncertain nonlinear multi-agent systems with actuator saturation. By using a smooth Lipschitz function to approximate the saturation nonlinearity, an augment system and the Nussbaum function are adopted to deal with the residual terms of saturation nonlinearity based on adaptive backstepping method. Since excessive energy and communication resources will be consumed during the procedure to handle actuator saturation, two event-triggered mechanisms are proposed to save the communication resources and reduce the controllers’ update frequency. Whenever the triggered conditions are satisfied, the control signals transmitted to the actuators are updated and broadcasted to the neighboring area. A ’disturbance-like’ term is integrated so that the event-triggered control problem with actuator saturation can be transformed into a robust problem while the unknown disturbances are tackled by adaptive update laws. Moreover, the requirement for global communication topology known by all the agents is relaxed by introducing new estimators. All the signals in the closed-loop system are uniformly bounded and the consensus tracking errors are exponentially converged to a bounded set. Meanwhile, the Zeno behavior is excluded. Simulation results are employed to validate the advantages of our proposed methods.  相似文献   

13.
This paper studies the cooperative adaptive dual-condition event-triggered tracking control problem for the uncertain nonlinear nonstrict feedback multi-agent systems with nonlinear faults and unknown disturbances. Under the framework of backstepping technology, a new threshold update method is designed for the state event-triggered mechanism. At the same time, we develop a novel distributed dual-condition event-triggered strategy that combined the fixed threshold triggered mechanism acted on the controller with the new event-triggered mechanism, which can better reduce the waste of communication bandwidth. To deal with the algebraic loop problem caused by the non-affine nonlinear fault, the Butterworth low-pass filter is introduced. At the same time, the unknown function problems are solved by the neural network technology. All signals of the system are semiglobally uniformly ultimately bounded and the tracking performance is achieved, which proved by the Lyapunov stability theorem. Finally, the results of the simulation test the efficiency of the proposed control scheme.  相似文献   

14.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

15.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

16.
This paper presents an improved adaptive design strategy for neural-network-based event-triggered tracking of uncertain strict-feedback nonlinear systems. An adaptive tracking scheme based on state variables transmitted from the sensor-to-controller channel is designed via only single neural network function approximator, regardless of unknown nonlinearities unmatched in the control input. Contrary to the existing multiple-function-approximators-based event-triggered backstepping control results with multiple triggering conditions dependent on all error surfaces, the proposed scheme only requires one triggering condition using a tracking error and thus can overcome the problem of the existing results that all virtual controllers with multiple function approximators should be computed in the sensor part. This leads to achieve the structural simplicity of the proposed event-triggered tracker in the presence of unmatched and unknown nonlinearities. Using the impulsive system approach and the error transformation technique, it is shown that all the signals of the closed-loop system are bounded and the tracking error is bounded within pre-designable time-varying bounds in the Lyapunov sense.  相似文献   

17.
《Journal of The Franklin Institute》2023,360(14):10681-10705
This paper investigates dynamic event-triggered adaptive leader-following semi-global bipartite consensus (SGBC) of multi-agent systems (MASs) with input saturation. A dynamic event-triggered adaptive control (DETAC) protocol is presented, where the triggering function can regulate its threshold value dynamically. It’s turned out that the SGBC can be achieved via the DETAC protocol under some inequalities. Then, the proposed DETAC protocol is extended to solve bipartite consensus under jointly connected topology. Furthermore, the Zeno behaviors will be avoided. Finally, the rationality of proposed DETAC protocols are tested by simulation results.  相似文献   

18.
This paper investigates secure bipartite consensus tracking of linear multi-agent systems under denial-of-service(DoS) attacks by using event-triggered control mechanism with data sampling. Both bipartite leader-following and containment tracking consensus are considered in this paper. The event-triggered control protocol using sampled-data information is designed to save limited resources. The communication channels are interrupted by intermittent DoS attacks. Sufficient conditions on the sampling periods, attack frequency and attack duration are obtained to ensure secure bipartite tracking consensus of the multi-agent systems. Finally, simulation example is provided to illustrate the effectiveness of the theoretical results.  相似文献   

19.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

20.
In this paper, the leader-following consensus problem of general linear multi-agent systems without direct access to real-time state is investigated. A novel observer-based event-triggered tracking consensus control scheme is proposed. In the control scheme, a distributed observer is designed to estimate the relative full states, which are used in tracking consensus protocol to achieve overall consensus. And an event-triggered mechanism with estimated state-dependent event condition is adopted to update the control signals so as to reduce unnecessary data communication. Based on the Lyapunov theorem and graph theory, the proposed event-triggered control scheme is proved to implement the tracking consensus when real-time state cannot direct obtain. Moreover, such scheme can exclude Zeno-behavior. Finally, numerical simulations illustrate the effectiveness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号