首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In classical model reference adaptive control (MRAC), the adaptive rates must be tuned to meet multiple competing objectives. Large adaptive rates guarantee rapid convergence of the trajectory tracking error to zero. However, large adaptive rates may also induce saturation of the actuators and excessive overshoots of the closed-loop system’s trajectory tracking error. Conversely, low adaptive rates may produce unsatisfactory trajectory tracking performances. To overcome these limitations, in the classical MRAC framework, the adaptive rates must be tuned through an iterative process. Alternative approaches require to modify the plant’s reference model or the reference command input. This paper presents the first MRAC laws for nonlinear dynamical systems affected by matched and parametric uncertainties that constrain both the closed-loop system’s trajectory tracking error and the control input at all times within user-defined bounds, and enforce a user-defined rate of convergence on the trajectory tracking error. By applying the proposed MRAC laws, the adaptive rates can be set arbitrarily large and both the plant’s reference model and the reference command input can be chosen arbitrarily. The user-defined rate of convergence of the closed-loop plant’s trajectory is enforced by introducing a user-defined auxiliary reference model, which converges to the trajectory tracking error obtained by applying the classical MRAC laws before its transient dynamics has decayed, and steering the trajectory tracking error to the auxiliary reference model at a rate of convergence that is higher than the rate of convergence of the plant’s reference model. The ability of the proposed MRAC laws to prescribe the performance of the closed-loop system’s trajectory tracking error and control input is guaranteed by barrier Lyapunov functions. Numerical simulations illustrate both the applicability of our theoretical results and their effectiveness compared to other techniques such as prescribed performance control, which allows to constrain both the rate of convergence and the maximum overshoot on the trajectory tracking error of uncertain systems.  相似文献   

2.
The comprehensive effect of external disturbance, measurement delay, unmeasurable states and input saturation makes the difficulties and challenges for a HAGC system. In this paper, an adaptive fuzzy output feedback control scheme is designed for a HAGC system under the simultaneous consideration of those factors. At the first place, by state transformation technique, the dynamic model of a HAGC system is simply expressed as a strict feedback form, where measurement delay is converted into input delay. Then, an auxiliary system is employed to compensate for the effect of input delay. Furthermore, an asymmetric barrier Lyapunov function (BLF) is constructed to ensure the output error constraint requirement of thickness error and the fuzzy observer is established to solve unmeasurable states, unknown nonlinear functions at the same time. With the aid of backstepping method, adaptive fuzzy controller is developed to assure that the closed-loop system is semi-globally boundedness and the output error of thickness error doesn’t violate its constraint. At the end, compared simulations are carried out to verify the efficiency of the proposed control scheme.  相似文献   

3.
This paper investigates the adaptive attitude tracking problem for the rigid satellite involving output constraint, input saturation, input time delay, and external disturbance by integrating barrier Lyapunov function (BLF) and prescribed performance control (PPC). In contrast to the existing approaches, the input delay is addressed by Pade approximation, and the actual control input concerning saturation is obtained by utilizing an auxiliary variable that simplifies the controller design with respect to mean value methods or Nussbaum function-based strategies. Due to the implementation of the BLF control, together with an interval notion-based PPC strategy, not only the system output but also the transformed error produced by PPC are constrained. An adaptive fuzzy controller is then constructed and the predesigned constraints for system output and the transformed error will not be violated. In addition, a smooth switch term is imported into the controller such that the finite time convergence for all error variables is guaranteed for a certain case while the singularity problem is avoided. Finally, simulations are provided to show the effectiveness and potential of the proposed new design techniques.  相似文献   

4.
In this paper, we develop an approach for solving the problem of sliding mode decentralized adaptive state-feedback tracking with continuous control actions for a class of uncertain nonlinear dynamical systems. In addition to the traditional asymptotic zero error tracking specification in the sliding mode decentralized model reference adaptive control (MRAC) problem formulation, here an additional requirement is specified explicitly in the problem statement. The tracking objective is described by a set of admissible reference trajectories, called a performance tube. The input signal to the reference model, selected within specified bounds, is used as a design parameter. The best reference trajectory is found by solving an additional optimization problem whose criterion penalizes the variance of the control signal.  相似文献   

5.
In this paper, the tracking control problem of uncertain Euler–Lagrange systems under control input saturation is studied. To handle system uncertainties, a leakage-type (LT) adaptive law is introduced to update the control gains to approach the disturbance variations without knowing the uncertainty upper bound a priori. In addition, an auxiliary dynamics is designed to deal with the saturation nonlinearity by introducing the auxiliary variables in the controller design. Lyapunov analysis verifies that based on the proposed method, the tracking error will be asymptotically bounded by a neighborhood around the origin. To demonstrate the proposed method, simulations are finally carried out on a two-link robot manipulator. Simulation results show that in the presence of actuator saturation, the proposed method induces less chattering signal in the control input compared to conventional sliding mode controllers.  相似文献   

6.
This paper investigates an adaptive prescribed performance control strategy with specific time planning for trajectory tracking of robotic manipulator subject to input constraint and external disturbances. By constructing an accumulated error vector embedded with a performance enhancement function and introducing an input auxiliary function, a specified-time control framework with built-in prescribed performance is further designed to ensure that the trajectory tracking performance. More particularly, the proposed control law is compatible with the control input saturation suppression algorithm, which is capable of improving the robustness of closed loop system. Under the framework of the proposed control strategy, it is proved by theory that all the signals in the closed-loop system are bounded, and moreover the tracking error can reach the exact convergence domain in a given time. At last, a numerical example is presented to indicate the feasibility and effectiveness of the proposed method.  相似文献   

7.
This paper investigates the optimal tracking control problem (OTCP) for nonlinear stochastic systems with input constraints under the dynamic event-triggered mechanism (DETM). Firstly, the OTCP is converted into the stabilizing optimization control problem by constructing a novel stochastic augmented system. The discounted performance index with nonquadratic utility function is formulated such that the input constraint can be encoded into the optimization problem. Then the adaptive dynamic programming (ADP) method of the critic-only architecture is employed to approximate the solutions of the OTCP. Unlike the conventional ADP methods based on time-driven mechanism or static event-triggered mechanism (SETM), the proposed adaptive control scheme integrates the DETM to further lighten the computing and communication loads. Furthermore, the uniform ultimately boundedness (UUB) of the critic weights and the tracking error are analysed with the Lyapunov theory. Finally, the simulation results are provided to validate the effectiveness of the proposed approach.  相似文献   

8.
In this paper, a novel backstepping-based adaptive dynamic programming (ADP) method is developed to solve the problem of intercepting a maneuver target in the presence of full-state and input constraints. To address state constraints, a barrier Lyapunov function is introduced to every backstepping procedure. An auxiliary design system is employed to compensate the input constraints. Then, an adaptive backstepping feedforward control strategy is designed, by which the tracking problem for strict-feedback systems can be reduced to an equivalence optimal regulation problem for affine nonlinear systems. Secondly, an adaptive optimal controller is developed by using ADP technique, in which a critic network is constructed to approximate the solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. Therefore, the whole control scheme consists of an adaptive feedforward controller and an optimal feedback controller. By utilizing Lyapunov's direct method, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded (UUB). Finally, the effectiveness of the proposed strategy is demonstrated by using a simple nonlinear system and a nonlinear two-dimensional missile-target interception system.  相似文献   

9.
In this paper, a novel adaptive control is investigated for robotic manipulators to unify the study of predefined performance control, input saturation and dynamic uncertainties. The focus is to achieve three user-defined performance indices of the closed-loop system with simultaneous existence of input constraints and model uncertainties, that is overshoot, precision within prescribed finite time and predefined steady-state error. To ensure the performance constraints, an error transformation is constructed for the manipulators by two auxiliary functions and embedded into the barrier Lyapunov function (BLF) in the backstepping analysis. Furthermore, the adaptive control strategies and the adaptive anti-saturation compensator are, respectively, developed to address the dynamics uncertainties and the actuator saturation. The Lyapunov analysis is employed to show that all the closed-loop signals are bounded. Finally, simulation studies and experiments on Baxter robot demonstrate the effectiveness of the proposed method.  相似文献   

10.
The terminal iterative learning control is designed for nonlinear systems based on neural networks. A terminal output tracking error model is obtained by using a system input and output algebraic function as well as the differential mean value theorem. The radial basis function neural network is utilized to construct the input for the system. The weights are updated by optimizing an objective function and an auxiliary error is introduced to compensate the approximation error from the neural network. Both time-invariant input case and time-varying input case are discussed in the note. Strict convergence analysis of proposed algorithm is proved by the Lyapunov like method. Simulations based on train station control problem and batch reactor are provided to demonstrate the effectiveness of the proposed algorithms.  相似文献   

11.
In this paper, a novel robust adaptive multistage anti-windup control strategy is developed for dynamic positioning ships in presence of input constraint, mismatched disturbance and external disturbance. Based on dynamic surface control technique, a composite control law, where both mismatched and matched disturbances are compensated, is established to stabilize the system without the requirement of solving any partial differential equations. In particularly, the mismatched disturbance caused by the model transformation is analyzed firstly and the better steady performance is achieved. In addition, a novel multistage anti-windup control based on anticipatory activation compensation is constructed to handle the input constraint while the transient performance is improved significantly. Moreover, the stability of the closed-loop system is proven via Lyapunov technique rigorously, and the tracking error can be forced into an arbitrarily small neighborhood around zero. Finally, simulations with comparisons demonstrate the effectiveness of the proposed method.  相似文献   

12.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

13.
In this paper, the problem of adaptive tracking control is investigated for nonlinear systems with asymmetric actuator backlash. We assume that the nonlinearities of the systems are unknown and the external disturbances are bounded. First, the control input will be quantized by a hysteresis-type quantizer, which can reduce the communication rate of the control signal. Then, the asymmetric actuator backlash is approximated to a new model, and a novel adaptive controller with the quantizer is designed via an adaptive backstepping technique to guarantee all the signals of the closed-loop tracking error system are uniform ultimate boundedness. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed algorithm.  相似文献   

14.
This paper develops a new dual ML-ADHDP method to solve the optimal consensus problem (OCP) of a class of heterogeneous discrete-time nonlinear multi-agent systems (MASs) with unknown dynamics and time delay. A hierarchical and distributed control strategy is used to transform the original problem into nonlinear model reference adaptive control (MRAC) problems and an OCP of virtual linear MASs. For the nonlinear MRAC problems, a new multi-layer action-dependent heuristic dynamic programming (ML-ADHDP) method is developed to overcome the unknown dynamics and neural network estimation errors, which has higher control accuracy. In order to solve the OCP of virtual linear MASs and improve the convergence speed, a new multi-layer performance index is proposed. Then the ML-ADHDP method is used to solve the coupled Hamiltonian–Jacobi–Bellman equation and obtain the optimal virtual control. Theoretical analysis proves that the original MASs can achieve Nash equilibrium, and simulation results show that the developed dual ML-ADHDP method ensures better convergence speed and higher control accuracy of original MASs.  相似文献   

15.
In this paper, an adaptive concave barrier function scheme coupled with the non-singular terminal sliding mode control technique is proposed for finite-time tracking control of the under-actuated nonlinear system in the existence of model uncertainty, external disturbance and input saturation. Firstly, the dynamical equation of under-actuated nonlinear n-order system is expressed under model uncertainty, external disturbance and input saturation. Secondly, for the improvement of stability performance of the system in the existence of input saturation, a compensation system is designed to overcome the constraint on the control input. Afterward, the tracking errors between actual states of the system and differentiable reference signals are defined and the sliding surface based on the defined tracking errors is presented. Then, for gaining the better transient and steady-state performance of the closed-loop system, the prescribed performance control scheme is adopted. Based on this method, the transformed prescribed form of the previous determined sliding surface is obtained to ensure that the sliding surface can reach to a predefined region. Afterward, for assurance of the finite-time reachability of transformed sliding surface, the nonsingular terminal sliding surface is recommended. In addition, for the compensation of the model uncertainty and external disturbance existed in the system, the adaptive-based concave barrier function technique is used to estimate the unknown bounds of uncertainty and exterior disturbance. Finally, for demonstration of the proposed control method, the simulations and experimental implementation are done on the air levitation system.  相似文献   

16.
This paper uses the directed communication topology to investigate the finite-time error constraint containment control for multiple Ocean Bottom Flying Node (OBFN) systems with thruster faults. The OBFN is a benthic Autonomous Underwater Vehicle (AUV), which has been used to explore submarine resources. The model uncertainties, velocity error constraint, external disturbances, and thruster faults of OBFNs motivate the design of containment controller. Moreover, some followers could obtain the states of leader OBFNs. We designed the command filter and the input signal is a hyperbolic tangent function. The virtual velocity error command is generated to follow the velocity error. Then the novel velocity error constraint distributed control algorithm is developed. Furthermore, for the problem of input saturation, by designing a stable anti-saturation compensator, an improved containment algorithm is proposed. It is proved that both the proposed approaches can converge the containment errors towards zero through Lyapunov theory in finite time, which means the followers can reach the convex hull formed by leaders in finite time. Finally, simulation results demonstrate the effectiveness of the two strategies.  相似文献   

17.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

18.
In this paper, a compound control strategy is proposed to realize the trajectory tracking task of quadrotors under operating constraints and disturbances. Disturbances caused by model uncertainties, environmental noises, and measurement disturbances are divided into matched disturbances and unmatched ones, which are compensated and suppressed separately by using two control components. The integral sliding mode control component is designed to actively reject the matched disturbances, and the control system is then transformed into an equivalent control system subject to equivalent disturbances only related to the unmatched disturbances. The remaining equivalent disturbances are treated by a robust model predictive control component based on the idea of constraints tightening, which minimizes the tracking error in an optimization framework and takes both state and input constraints into account explicitly. The derived compound control strategy is based on these two control components. Conditions are provided to guarantee the robust constraint satisfaction, recursive feasibility and closed-loop stability of the tracking error system. An illustrative example on the quadrotors shows the efficiency and robustness of this compound tracking control algorithm.  相似文献   

19.
In this paper, the multiple model strategy is applied to the adaptive control of switched linear systems to improve the transient performance. The solvability of the adaptive stabilization problem of each subsystem is not required. Firstly, the two-layer switching mechanism is designed. The state-dependent switching law with dwell time constraint is designed in the outer-layer switching to guarantee the stability of the switched systems. During the interval of dwell time constraint, the parameter resetting adaptive laws are designed in the inner-layer switching to improve the transient performance. Secondly, the minimum dwell time constraint providing enough time for multiple model adaptive control strategy to work fully and maintaining the stability of the switched systems is found. Finally, the proposed switched multiple model adaptive control strategy guarantees that all the closed-loop system signals remain bounded and the state tracking error converges to zero.  相似文献   

20.
In consideration of target angular velocity uncertainty and external disturbance, a modified dynamic output feedback sliding mode control (DOFSMC) method is proposed for spacecraft autonomous hovering system without velocity measurements. As a stepping-stone, an additional dynamic compensator is introduced into the design of sliding surface, then an augmented system is reconstructed with the system uncertainty and external disturbance. Based on the linear matrix inequality (LMI), a sufficient condition is given, which guarantees the disturbance attenuation performance of sliding mode dynamics. By introducing an auxiliary variable, a modified version of adaptive sliding mode control (ASMC) law is designed, and the finite-time stability of sliding variable is established by the Lyapunov stability theory. Compared with other results, the proposed method is less conservative and can decrease the generated control input force significantly. Finally, two simulation examples are performed to validate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号