首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In this paper, the problem of pinning and impulsive synchronization between two complex dynamical networks with non-derivative and derivative coupling is investigated. A hybrid controller, which contains a pinning controller and a pinning impulsive controller, is proposed simultaneously. Based on the Lyapunov stability theory and mathematical analysis technique, some novel criteria of synchronization are derived, which can guarantee that the response network asymptotically synchronizes to the drive network by combining pinning control and pinning impulsive control. Moreover, the restrictions about non-derivative coupling matrix, impulsive intervals and the number of pinned nodes are removed. Numerical examples are presented finally to illustrate the effectiveness of the theoretical results.  相似文献   

2.
This paper is concerned with the problem of non-fragile guaranteed cost control (GCC) for networked nonlinear Markov jump systems subject to multiple cyber-attacks, which are characterized by Takagi–Sugeno (T–S) fuzzy model with time-varying delay. Specifically, a variety of cyber-attacks, including deception attacks and Denial-of-Service (DoS) attacks, are considered, which occur in the forward and feedback communication links, respectively. To achieve stochastic stability under guaranteed cost function (GCF), the paper proposes a Lyapunov–Krasovskii (L–K) function approach. The approach derives sufficient conditions for stochastic stability, and obtains non-fragile controller gains and the uniform upper bound of the GCF using linear matrix inequalities (LMIs) technique. Finally, the effectiveness of the proposed algorithm is evaluated by simulation experiment.  相似文献   

3.
In this paper, the dynamic event-based resilient consensus control of the multiple networked Euler-Lagrangian (E-L) systems under the Denial of Service (DoS) attacks is considered. Compared with linear cyber-physical systems, nonlinear networked E-L systems are more complex and closer to actual mechanical systems. For the situation where the topology is a strongly connected directed topology, a controller based on a dynamic event-trigger mechanism is designed to achieve consensus control for the networked E-L system in the absence of DoS attacks. Sufficient conditions are presented, which can guarantee the closed-loop system be stable. Then the resilient consensus problem of event-based controllers under energy-constrained DoS attacks is analyzed. The conditions related to the duration and frequency of DoS attacks are given. Zeno behavior is proved does not exist in the proposed control scheme. Finally, some numerical simulation results are given for verifying the theoretical results.  相似文献   

4.
This paper investigates the security control problem for a class of two-time-scale cyber-physical systems (TTSCPSs) with multiple transmission channels under the denial-of-service (DoS) attacks. A linear TTSCPSs model is first proposed with slow and fast transmission channels, which correspond to slow and fast physical components in terms of their communicating capacities and sampling rates. The measurement data-packets are transmitted via slow and fast transmission channels which are compromised by asynchronous DoS attacks. A novel composite controller depending on the singular perturbation parameter (SPP) is formulated and corresponding switching laws are designed to achieve certain resilience against DoS attacks. Then, by establishing a SPP-dependent Lyapunov function, sufficient conditions are obtained on the duration and frequency of the DoS attacks, such that, for any SPP less than or equal to a predefined upper bound, the input-to-state stability can be guaranteed for the closed-loop TTSCPSs. Finally, a networked DC motor control system is employed to demonstrate the effectiveness of the proposed security control algorithm.  相似文献   

5.
This paper investigates the problem of resilient control for cyber-physical systems (CPSs) described by T-S fuzzy models. In the presence of denial-of-service (DoS) attacks, information transmission over the communication network is prevented. Under this circumstance, the traditional control schemes which are proposed based on perfect measurements will be infeasible. To overcome this difficulty, with the utilization of an equivalent switching control method, a novel gain-switched observer-based resilient control scheme is proposed. According to whether the DoS attack is activated, two different controller synthesis conditions are given by combining the information of the tolerable DoS attacks. In addition, a quantitative relationship between the resilience against DoS attacks and the obtained disturbance attenuation level is revealed, which is helpful for balancing the tradeoff between the abilities to tolerate DoS attacks and attenuate the influence of external disturbance. Finally, simulation results are provided to verify the effectiveness of the proposed switching control scheme.  相似文献   

6.
This paper is concerned with the security control problem of the networked control system (NCSs) subjected to denial of service (DoS) attacks. In order to guarantee the security performance, this paper treats the influence of packet dropouts due to DoS attacks as a uncertainty of triggering condition. Firstly, a novel resilient triggering strategy by considering the uncertainty of triggering condition caused by DoS attacks is proposed. Secondly, the event-based security controller under the resilient triggering strategy is designed while the DoS-based security performance is preserved. At last, the simulation results show that the proposed resilient triggering strategy is resilient to DoS attacks while guaranteing the security performance.  相似文献   

7.
In this study, a dynamic event-triggered control problem is addressed for nonlinear networked control systems (NCSs) subject to denial-of-service (DoS) attacks. Assume that data from the plant to the controller is transmitted via a wireless transmission channel under malicious DoS attacks characterized by frequency and duration properties. On the premise of ensuring the stability and minimum inter-event time (MIET) of the systems, dynamic event-triggered mechanisms (DETMs) are proposed for the hybrid dynamic system to withstand a certain degree of DoS attacks. Three event-triggered schemes are designed for the most existing state-based control systems which further enlarge the inter-event times, and the stabilization conditions of hybrid dynamic system are given. Finally, illustrative examples are provided to verify the effectiveness of the presented theoretical results.  相似文献   

8.
This paper studies the problem of event-triggered control for the class of Markovian jump neural networks (MJNNs) under actuator saturation and hybrid cyber attacks. In order to save the limited network bandwidth, the event-triggered mechanism (ETM) is introduce to determine whether the signal of sampler is transmitted to the remote controller through the communication network. With the aid of two sets of Bernoulli distributed random variables (BDRVs), the mathematical model of randomly occurring deception attacks (RODAs) is presented. Due to the limitations of security and technology factors and the complex network environment in practice, actuator saturation and denial-of-service (DoS) attack are also considered. In summary, the MJNNs, ETM, actuator saturation and hybrid cyber attacks are incorporated into a unified construction, and a augmented system under this construction is modeled for the first time. For this system, the existence conditions of event-triggered control are derived through LyapunovKrasovskii functional (LKF). Based on this sufficient condition, the linear matrix inequality (LMI) technique is utilized to obtain the control gain of the controller and the weight matrix of the trigger. Finally, a numerical example is given to verify the effectiveness of the proposed method in this paper.  相似文献   

9.
This study is concerned with the event-triggered sliding mode control problem for a class of cyber-physical switched systems, in which the Denial-of-Service (DoS) attacks may randomly occur according to the Bernoulli distribution. A key issue is how to design the output feedback sliding mode control (SMC) law for guaranteeing the dynamical performance of the closed-loop system under DoS attacks. To this end, an event-triggered mechanism is firstly introduced to reduce the communication load, under which the measurement signal is transmitted only when a certain triggering condition is satisfied. An usable output signal for the controller is constructed to compensate the effect of unmeasured states and DoS attacks. And then, a dynamic output feedback sliding mode controller is designed by means of the attack probability and the compensated output signals. Both the reachability and the mean-square exponential stability of sliding mode dynamics are investigated and the corresponding sufficient conditions are obtained. Finally, some numerical simulation results are provided.  相似文献   

10.
This paper studies the control problem of uncertain stochastic systems, which takes into account the impact of network attacks. The types of network attacks considered are denial-of-service (DoS) attacks, deception attacks and replay attacks. In order to save network resources and improve communication utilization, the static event-triggered mechanism and adaptive event-triggered mechanism are cited respectively. Firstly, a new Lyapunov-Krasovskii functional is constructed, employing improved Wirtinger-based integral inequality and Jensens inequality, the criteria on stochastic stability in the mean square for uncertain stochastic systems are proposed. Secondly, the design methods of static event-triggered controller and adaptive event-triggered controller are given respectively. Finally, a practical example is given to manifest the effectiveness of the theoretical results.  相似文献   

11.
Under the influence of additive communication noises and system noises, we investigate the event-triggered control problem for second-order multi-agent systems composed of double integrators or LC oscillators under random denial-of-service (DoS) attacks. Different from the previous cases where the attackers completely interrupt communication networks, we consider that attackers interrupt the communication network with a specific probability and can attack part or all communication links randomly. Based on this, the conditions on the attack duration and attack success probability are given when the system can still achieve consensus under random DoS attacks. In addition, the consensus bounds are expressed. Finally, two types of LC oscillator systems are used to illustrate the effectiveness of results.  相似文献   

12.
The distributed event-triggered secure consensus control is discussed for multi-agent systems (MASs) subject to DoS attacks and controller gain variation. In order to reduce unnecessary network traffic in communication channel, a resilient distributed event-triggered scheme is adopted at each agent to decide whether the sampled signal should be transmitted or not. The event-triggered scheme in this paper can be applicable to MASs under denial-of-service (DoS) attacks. We assume the information of DoS attacks, such as the attack period and the consecutive attack duration, can be detected. Under the introduced communication scheme and the occurrence of DoS attacks, a new sufficient condition is achieved which can guarantee the security consensus performance of the established system model. Moreover, the explicit expressions of the triggering matrices and the controller gain are presented. Finally, simulation results are provided to verify the effectiveness of the obtained theoretical results.  相似文献   

13.
This paper is devoted to the non-fragile exponential synchronization problem of complex dynamical networks with time-varying coupling delays via sampled-data static output-feedback controller involving a constant signal transmission delay. The dynamics of the nodes contain s quadratically restricted nonlinearities, and the feedback gain is allowed to have norm-bounded time-varying uncertainty. The control design is based on a Lyapunov–Krasovskii functional, which consists of the sum of terms assigned to the individual nodes, i.e., it is constructed without merging the complex dynamical network’s nodes into a single large-scale system. In this way, the proposed design method has substantially reduced computational complexity and improved conservativeness, and guaranties non-fragile exponential stability of the error system. The sufficient stability condition is expressed in terms of linear matrix inequalities that are solvable by standard tools. The efficiency of the proposed method is illustrated by numerical examples.  相似文献   

14.
The present study investigates the fixed-time synchronization issue for delayed complex networks under intermittent pinning control. Different from some existing semi-intermittent controllers for finite/fixed-time synchronization, our pinning controller is designed in a complete intermittent way. In order to address the encountered theoretical analysis difficulties, a new differential inequality lemma is developed, which is suitable for the fixed-time synchronization studies under periodic or aperiodic complete intermittent control. Then, by using Lyapunov theory and pinning control approach, sufficient conditions are proposed which can guarantee the aperiodically completely intermittent-controlled delayed complex networks realizing fixed-time pinning synchronization. Moreover, the settling time is explicitly estimated, which is irrelevant to the initial values of our network systems. Additionally, as a special case, the scenario of periodic complete intermittent control is also discussed. At last, some simulation examples are utilized to confirm our theoretical outcomes.  相似文献   

15.
This paper is concerned with the strong γc-γcl H stabilization problem for networked control systems (NCSs) subject to denial of service (DoS) attacks, which are common attack behaviors that affect the packet transmission of measurement or control signals. The purpose of the problem under consideration is to design a stable dynamic output feedback (DOF) controller (strong stabilizing controller) with the prescribed H performance norm bound γc to tolerate multiple packet dropouts caused by DoS attacks, such that, the closed-loop system is mean-square stable and captures the H disturbance attenuation norm bound γcl. Based on the Lyapunov functional and the stochastic control approach, some sufficient conditions with the form of matrix inequalities for the existence of the desired stable DOF controller are established. Then, by an orthogonal complement space technique, the controller gain is parameterized. Next, an iterative linear matrix inequality (LMI) algorithm is developed to obtain the controller gain. Finally, the usefulness of the proposed method is indicated by a numerical simulation example.  相似文献   

16.
This paper investigates the input-to-state stabilizing (ISS) problem for Takagi–Sugeno (T–S) fuzzy systems with multiple transmission channels under denial-of-service (DoS) attacks. To achieve ISS, time-triggered data update logics on different channels are determined by linear matrix inequalities (LMIs). Under DoS attacks, a switched fuzzy dynamic output feedback controller which takes the security of premise variables into consideration is constructed. A novel time division mechanism is proposed to deal with the uncertainties caused by DoS attacks at different time periods. The proposed mechanism considers all cases of DoS attacks, which is more general compared to the existing method. Then, sufficient conditions are given to ensure the ISS of T–S fuzzy systems under DoS attacks. Finally, two examples are given to illustrate the effectiveness and merits of the proposed method.  相似文献   

17.
This paper investigates the observer-based consensus control for high-order nonlinear multi-agent systems (MASs) under denial-of-service (DoS) attacks. When the DoS attacks appear, the communication channels are destroyed, and the blocked information may ruin the consensus of MASs. A switched state observer is designed for the followers to observe the leader’s state whether the DoS attacks occur or not. Then, a dynamic event-triggered condition is proposed to reduce the consumption of communication resources. Moreover, an observer-based and dynamic event-triggered controller is formulated to achieve leader-following consensus through the back-stepping method. Additionally, the boundedness of all closed-loop signals is obtained based on the Lyapunov stability theory. Finally, the simulation results demonstrate the effectiveness of the presented control strategy under DoS attacks.  相似文献   

18.
A novel distributed secondary voltage and frequency control strategy is proposed with the Zeno-free event-triggered scheme for an island alternating current (AC) microgrid under Denial-of-Service (DoS) attacks. A DoS attack compensation mechanism and an event-triggered mechanism on the basis of the checking scheme are developed. Then, a secure event-checked based event-triggered secondary control method is explored to guarantee the tracking performance of the microgrid under DoS attacks. Further, some linear matrix inequalities (LMIs)-based sufficient conditions are derived to design the controller. What’s more, the proposed asynchronous periodic triggering method can efficiently save communication resources and further reduce the update number of the controller. Finally, the efficiency of this work is verified by an islanded AC microgrid with comparisons.  相似文献   

19.
This paper studies the fault-tolerant model-free adaptive control (FT-MFAC) problem for a class of single-input single-output (SISO) nonlinear networked control systems (NCSs) under denial-of-service (DoS) attacks. A novel FT-MFAC framework is established with the consideration of DoS attacks and the sensor fault, in which DoS attacks obeying the Bernoulli distribution randomly happen in the sensor-to-controller channel and the sensor fault is approximated by the radial basis function neural network (RBFNN). Based on the proposed framework, an FT-MFAC algorithm that uses only input/output data is proposed to guarantee that the output tracking error is bounded in the sense of mean square. Finally, the effectiveness of the proposed algorithm is illustrated by a simulation.  相似文献   

20.
In practice, it is almost impossible to directly add a controller on each node in a complex dynamical network due to the high control cost and the difficulty of practical implementation, especially for large-scale networks. In order to address this issue, a pinning control strategy is introduced as a feasible alternative. The objective of this paper is first to recall some recent advancements in global pinning synchronization of complex networks with general communication topologies. A systematic review is presented thoroughly from the following aspects, including modeling, network topologies, control methodologies, theoretical analysis methods, and pinned node selection and localization schemes (pinning strategies). Fully distributed adaptive laws are proposed subsequently for the coupling strength as well as pinning control gains, and sufficient conditions are obtained to synchronize and pin a general complex network to a preassigned trajectory. Moreover, some open problems and future works in the field are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号