首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
定理设一元二次方程x2+px+q=0有两个不等的实根x1、x2,且x1<x2,k为常数,若x1<k<x2,则有k2+pk+q<0.  相似文献   

2.
琴生不等式是:若f(x)是区间L上的凸函数,ai∈L ,i=1 ,…,n ,则 ni=1f(ai)≤nf( 1n ni=1ai) .我们还有(以下把 ni=1记作 )定理 设f(x)是闭区间[a ,b]上的凸函数,ai∈[a ,b],i=1 ,…,n ,则f(ai)≥kf(b) (n -k -1 ) f(a) f(c) .①其中 k = ai-nab-a ,c= ai-kb -(n -k -1 )a .证明:任取x1、x2 ,使a 相似文献   

3.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

4.
如果一元二次方程ax2 bx c=0(a≠0)的两个根是x1,x2,那么x1 x2=-ba;x1x2=ca.这就是著名的韦达定理.根据韦达定理,可得出以下两个推论.推论1设x1,x2是一元二次方程ax2 bx c=0(a≠0)的两根,则x1-x2=Δ姨a,其中Δ=b2-4ac.利用韦达定理很容易证明推论1.推论2如果一元二次方程ax2 bx c=0(a≠0)的两根之比为k,则kb2=(1 k)2ac.证明:设x1,x2是方程ax2 bx c=0(a≠0)的两个实数根,则x1x2=k,x1 x2=-ba,x1x2=ca .消去方程组中的x1和x2,得kb2=(1 k)2ac. 下面谈谈以上两个推论的应用.例1已知开口向下的抛物线y=ax2 bx c与x轴交于M、N两点(…  相似文献   

5.
构造一元二次方程解题是一种常用的解题方法,这种方法的关键是根据题目中的一些条件来构造一元二次方程,从而达到将问题化难为易、化繁为简的目的.下面举例说明:一、利用韦达定理的逆定理构造一元二次方程当题目中含有x1 x2=p、x1x2=q时,则可以利用韦达定理的逆定理构造一元二次方程来解决.例1已知a、b、c、d为实数,且满足2c-a=b,c2 14d2=ab,求证:a=b.证明:由已知a b=2c,ab=c2 14d2得a、b是方程x2-2cx c2 14d2=0的两根.∵a、b、c、d为实数,∴Δ=4c2-4(c2 14d2)=-d2≥0.∴d2≤0.又因为d2≥0,d2=0,即△=0.∴方程有两个相等实根,即a=b.二、利用…  相似文献   

6.
一、两个定理及其推论 定理1:过点(k,0)作一条直线和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则x1x2=k2,y1y2=-2pk.  相似文献   

7.
在解析几何中“求以圆锥曲线中的定点为中点的弦的方程”是直线与圆锥曲线位置关系中重要考点之一,高考中也多次出现.题目:设A、B两点是双曲线C:2x2-y2=2上两点,点N(1,2)是线段AB中点,求直线AB方程.解法1(巧用韦达定理,整体替换):要求过定点N(1,2)的直线AB的方程,关键是求斜率k.设点A(x1,y1),点B(x2,y2),由中点公式知:x1+x2=2,y1+y2=4,再利用韦达定理整体替换构造关于k的方程,求k的值.设直线AB方程为:y=k(x-1)+2,代入双曲线C的方程整理得:(2-k2)x2+2k(k-2)x-k2+4k-6=0.当2-k2≠0时,则Δ=4k2(k-2)2-4(2-k2)(-k2+4k-6)>0,解得k<23且k≠…  相似文献   

8.
一、训练平台1.已知4是关于x的方程3x2-4a=0的一个解,那么2a-19的值是()A.3B.4C.5D.62.方程2x(x-3)=5(x-3)的根是()A.x=25B.x=3C.x1=3,x2=25D.x1=-52,x2=-33.已知(k2 1)x2 x k2-k=0是关于x的一元二次方程,则k的取值范围是()A.k=0B.k≠0C.k≠±1D.k是任意实数4.若一元二次方程ax2 bx c=0(a≠0)中的二次项系数、一次项系数、常数项之和是零,则该方程必有一根为()A.0B.1C.-1D.±15.下列方程没有实数根的是()A.4(x2 2)=3x B.5(x2-1)-x=0C.x2-x=100D.9x2-24x 16=06.已知x1,x2是方程x2-x-3=0的两根,那么x21 x22的值是()A.1B.5C.7D.4497.…  相似文献   

9.
在解决一些几何问题时 ,对问题的结构特征进行适当的联想 ,有时可以构造出一元二次方程 ,你将会感到用一元二次方程解几何题的轻松与简单 ,现举几例加以说明 .1 构造一元二次方程 ,运用根的判别式例 1 求证 :对于任一矩形A ,总存在一个矩形B ,使得矩形A和矩形B的周长之比和面积之比都等于常数k(k≥ 1 ) .(全国初中联赛题 )解 设A、B矩形的长宽分别为a、b ,x、y .由题意知 2 (x y) =k· 2 (a b) ,xy=kab相当于原命题等价于命题“二次方程t2 -k(a b)t kab =0的有两个正实根x、y”——— (1 ) .因为k≥ 1 ,a>0、b >0 ,所以x y=k(a b) >0…  相似文献   

10.
关于一元二次方程的两根之和m=x1 x2=-ab、两根之积n=x1x2=ac是大家都熟悉的,那么一元二次方程的两根之比λ和两根之差d与系数的关系又是怎样的呢?经过探索,可得定理1如果一元二次方程ax2 bx c=0(a≠0,c≠0)得两根之比为λ,则有(λ 1)2λ=abc2.证明由题设得(λ λ1)2=λ2 2λ 1λ=λ 1λ 2=xx12 xx12 2=x12 2x1x2 x22x1x2=(x1x 1xx22)2将韦达定理代入(1)得(λ λ1)2=(-cab)2a=abc2.定理2如果一元二次方程ax2 bx c=0(a≠0)两根之差的绝对值为d,则有d=|aδ|(其中δ=b2-4ac).证明对称性,不妨设x1=21a(-b b2-4ac),x2=21a(-b-b2-4ac),所以d=|x1-x…  相似文献   

11.
大家都知道,判别式主要应用于判断一元二次方程根的情况,这类问题比较简单,下面介绍判别式其他方面的一些应用·一、求条件最值问题例1已知实数x,y满足x2-12y=0,求x-3y的最值·分析:运用设“k”法消去y,即可整理成x的一元二次方程·解:设x-3y=k,则y=x3-k,代入x2-12y=0,化简得x2-4x+4k=0,所以Δ=(-4)2-4×1×4k≥0,所以k≤1,所以x-3y有最大值为1,无最小值·例2已知实数x,y满足条件x2+xy+y2=1,求x2+y2的最值·解:设x2+y2=k,则x2+ky2=1,代入x2+xy+y2=1=x2+ky2,化简得(1-1k)x2+xy+(1-1k)y2=0·整理为yx的一元二次方程为(1-1k)(xy)2+(xy)+(1-1k)=…  相似文献   

12.
解数学题,遇到形如x+y=2a的条件,可设x=a+k,y=a-k(k是参数),从而有效地解决许多类型的题,这就是均值换元,本文介绍用此法在解题中的应用。1、用于条件求值。例1若a+b=5,a3+b3=50,求a2+b2解:设a=52+k,b=52-k∴(52+k)3+(52-k)3=50,即(52+k+52-k)[(52+k)2-(52+k)(52-k)+(52-k)2]=50∴k2=54于是a2+b2=(52+k)2+(52-k)2=504+2k2=504+104=152、用于因式分解。例2分解因式(6x-1)(2x-1)(3x-1)(x-1)+x2解:设k=(6x-1)(x-1)+(2x-1)(3x-1)2=6x2-6x+1则原式=[(6x-1)(x-1)][(2x-1)(3x-1)]+x=(6x2-7x+1)(6x2-5x+1)+x2=(k-x)(k+x)+x2=k2=(6x2-6x+1)23、用于解…  相似文献   

13.
文 [1 ]中给出了满足递推关系an+1 =p+ qan( 1 )(其中 p 为非零常数 ,q为正常数 )的数列{an}的通项公式 ,并据此证明了当此数列有两项相等时 ,其必为常数列 .下面我们将取消“p为非零常数 ,q为正常数”这一限制而考虑更广泛的情形 ,得出有两项相等且满足(1)的数列的完全分类 .主要结论是 :定理 1设 (实或复 )数列 {an}满足( 1 )且 a1 =a(≠ 0 ) ,其中 p,q为常数且 q≠ 0 ,方程 x=p+ qx的两根 (称为数列 {an}的特征根 )为 x1 和 x2 ,则当 p2 + 4q≠ 0即 x1 ≠ x2时 ,{an}的通项为an=( a- x2 ) xn1 - ( a- x1 ) xn2( a- x2 ) xn- 1 1 - ( a- x…  相似文献   

14.
“要使方程 lg(kx)=2lg(x 1)只有一个实数解,求常数 k 的取值范围”.解:lg(kx)=lg(x 1)~2得 kx=(x 1)~2,整理得x~2 (2-k)x 1=0,要使方程只有一个实数解,即方程有两个相等的实根,只须判别式Δ=0.得Δ=(2-k)~2-4=k(k-4)=0,k_1=0 k_2=4,当 k=0时,不满足 kx>0,故舍去.  相似文献   

15.
如果两数α,β满足:α β=p,α·β=q,则α,β是关于x的一元二次方程x~2-px q=0的两个根,这便是韦达定理逆定理,它在实数域内应用广泛,在复数域内仍然适用,根据复数的有关概念和性质,灵活应用韦达定理逆定理,常能使一些复数问题,得以简捷解法。  相似文献   

16.
有一类几何不等式问题 ,我们可通过韦达定理的逆定理构造一元二次方程 ,再运用一元二次方程根的判别式进行证明。例 1 如图 1,已知 PT切○· O于 T点 ,直线 PN交○· O于点 M、N。求证 :PM+ PN>2 PT。证明 :由切割线定理 ,得PM· PN=PT2 ,       1又 PM+ PN=PM+ PN,2于是根据韦达定理的逆定理 ,由1、2可知 :PM、PN是方程 x2 - (PM+ PN) x+ PT2 =0的两个不相等的实数根 (因为 PM≠ PN)。∴△ =(PM+ PN) 2 - 4PT2 >0 ,即 (PM+ PN) 2 >4 PT2 , 故 PM+ PN>2 PT。例 2 如图 2 ,在 Rt△ ABC中 ,∠ C=90°,又 …  相似文献   

17.
在一元二次方程ax2 +bx +c =0(a≠0)中,若两根为x1、x2,则x1+x2=-b/4,x1·x2=c/a,根与系数的这种关系又称为韦达定理.它的逆定理同样成立,即当x1+x2=b/a,x1·x2=c/a时,那么x1、x2是ax2 +bx +c=0(a≠0)的两根. 一元二次方程的根与系数的关系,综合性强,应用极为广泛. 一、确定符合条件的方程 例1 (2012年烟台卷)下列一元二次方程两实数根的和为-4的是().  相似文献   

18.
一、由方程的定义确定参数例1若(m2-m-2)x2+mx+3=0是关于x的一元二次方程,则m的取值范围是().(A)m≠-1;(B)m≠2;(C)m≠-1且m≠2;(D)一切实数.解:由一元二次方程的定义,得m2-m-2≠0,∴(m-2)(m+1)≠0,∴m≠2且m≠-1.故选(C).二、由方程根的定义确定参数例2方程x2-12x-m=0的一个根是2,那么m的值是.解:由方程根的定义,把x=2代入方程,得22-12×2-m=0,解得m=-20.三、由方程根的情况确定参数例3已知关于x的一元二次方程(1-2k)x2-2k+1√x-1=0有两个不相等的实数根,求k的取值范围.解:∵方程有两个不相等的实数根,∴△=(-2k+1√)2-4(1-2k)×(-1)=-4k…  相似文献   

19.
在什么条件下,一元二次方程的根才是整数呢?下面几个定理部分回答了这个问题. 定理1 若首项系数为1的整系数方程x2+px+q=0(p、q为整数)的判别式Δ=p2-4q为一个完全平方数,则方程的根为整数.反之,亦成立. 这个定理可用反证法来证明,这里从略.只强调一点:对首项系数不  相似文献   

20.
一元二次方程x~2+px+q=0(p,q不为零,p~2-4q≥0)的实数根可用下述图解方法求得。以点A(0,1)和点B(-p,q)为直径的两端作圆,则该圆与x轴的交点的横坐标就是一元二次方程x~2+px+q=0的实数根。证明 AB的中点坐标为(-(1/2)p,(1/2)(1+q)),AB线段的长为 |AB|=(p~2+(1-q)~2)~(1/2), 故以AB为直径的圆的方程为(x+(1/2)p)~2+[y-(1/2)(1+q)]~2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号