首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h?1 in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h?1 (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.  相似文献   

3.
This study investigated whether male runners improve running performance, running economy, ankle plantar flexor strength, and alter running biomechanics and lower limb bone mineral density when gradually transitioning to using minimalist shoes for 100% of weekly running. The study was a planned follow-up of runners (n?=?50) who transitioned to minimalist or conventional shoes for 35% of weekly structured training in a previous 6-week randomised controlled trial. In that trial, running performance and economy improved more with minimalist shoes than conventional shoes. Runners in each group were instructed to continue running in their allocated shoe during their own preferred training programme for a further 20 weeks while increasing allocated shoe use to 100% of weekly training. At the 20-week follow-up, minimalist shoes did not affect performance (effect size: 0.19; p?=?0.218), running economy (effect size: ≤?0.24; p?≥?0.388), stride rate or length (effect size: ≤?0.12; p?≥?0.550), foot strike (effect size: ≤?0.25; p?≥?0.366), or bone mineral density (effect size: ≤?0.40; p?≥?0.319). Minimalist shoes increased plantar flexor strength more than conventional shoes when runners trained with greater mean weekly training distances (shoe*distance interaction: p?=?0.036). After greater improvements with minimalist shoes during the initial six weeks of a structured training programme, increasing minimalist shoe use from 35% to 100% over 20 weeks, when runners use their own preferred training programme, did not further improve performance, running economy or alter running biomechanics and lower limb bone mineral density. Minimalist shoes improved plantar flexor strength more than conventional shoes in runners with greater weekly training distances.  相似文献   

4.
Abstract

Running shoe construction influences the forces experienced by the human body while running. The aim of this study was to ascertain whether the new sole architecture of the On running shoe reduces ground reaction forces compared with running barefoot or with a conventional running shoe and whether it changes the physiological parameters of running in shoes. Thirty-seven trained male participants were studied while running at submaximal speeds wearing their conventional running shoe, wearing the On running shoe and while barefoot. Additional biomechanical and physiological values were investigated to determine whether the On running shoe induced any changes in these parameters compared with conventional running shoes. The On exhibited similar ground reaction forces as conventional shoes, and these were different from the forces experienced while running barefoot, showing that the On was more similar to typical shoed running. No difference was observed in running economy between the On and a conventional shoe model. However, a slightly lower heart rate (HR) (≈1.3%) and blood lactate concentration (≈5.5%) were observed during submaximal running with the On running shoe compared with a conventional running shoe, as well as a greater lateral deviation of the centre of pressure mid-stance. The ramifications of the reduced HR and blood lactate concentration for competitive performance are unknown.  相似文献   

5.
Despite the growing interest in minimalist shoes, no studies have compared the efficacy of different types of minimalist shoe models in reproducing barefoot running patterns and in eliciting biomechanical changes that make them differ from standard cushioned running shoes. The aim of this study was to investigate the acute effects of different footwear models, marketed as “minimalist” by their manufacturer, on running biomechanics. Six running shoes marketed as barefoot/minimalist models, a standard cushioned shoe and the barefoot condition were tested. Foot–/shoe–ground pressure and three-dimensional lower limb kinematics were measured in experienced rearfoot strike runners while they were running at 3.33 m · s?1 on an instrumented treadmill. Physical and mechanical characteristics of shoes (mass, heel and forefoot sole thickness, shock absorption and flexibility) were measured with laboratory tests. There were significant changes in foot strike pattern (described by the strike index and foot contact angle) and spatio-temporal stride characteristics, whereas only some among the other selected kinematic parameters (i.e. knee angles and hip vertical displacement) changed accordingly. Different types of minimalist footwear models induced different changes. It appears that minimalist footwear with lower heel heights and minimal shock absorption is more effective in replicating barefoot running.  相似文献   

6.
The purpose of this study was to determine whether there are differences in the perceived comfort, plantar pressure, and rearfoot motion between laced running shoes and elastic-covered running shoes. Fifteen male amateur runners participated in the study. Each participant was assigned laced running shoes and elastic-covered running shoes for use during the study. The perceived comfort, plantar loading, and rearfoot motion control of each type of shoes during running were recorded. When the laced running shoes and elastic-covered running shoes were compared, the elastic-covered running shoes were given a lower perceived comfort rating in terms of shoe length, width, heel cup fitting, and forefoot cushioning. The elastic-covered running shoes also recorded higher peak plantar pressure in the lateral side of the forefoot, as well as larger maximum rearfoot pronation. Overall, shoelaces can help runners obtain better foot-shoe fit. They increase the perceived comfort, and decrease the maximum pronation and plantar pressure. Moreover, shoelaces may help prevent injury in running by allowing better control of the aforementioned factors.  相似文献   

7.
8.
This study investigated whether an increase in the forefoot bending stiffness of a badminton shoe would positively affect agility, comfort and biomechanical variables during badminton-specific movements. Three shoe conditions with identical shoe upper and sole designs with different bending stiffness (Flexible, Regular and Stiff) were used. Elite male badminton players completed an agility test on a standard badminton court involving consecutive lunges in six directions, a comfort test performed by a pair of participants conducting a game-like practice trial and a biomechanics test involving a random assignment of consecutive right forward lunges. No significant differences were found in agility time and biomechanical variables among the three shoes. The players wearing the shoe with a flexible forefoot outsole demonstrated a decreased perception of comfort in the forefoot cushion compared to regular and stiffer conditions during the comfort test (p < 0.05). The results suggested that the modification of forefoot bending stiffness would influence individual perception of comfort but would not influence performance and lower extremity kinematics during the tested badminton-specific tasks. It was concluded that an optimisation of forefoot structure and materials in badminton shoes should consider the individual’s perception to maximise footwear comfort in performance.  相似文献   

9.
This study sought to compare the kinetics and kinematics data in a group of habitual shod runners when running in traditional running shoes and newly designed minimalist shoes with lug platform. This novel footwear design claims to simulate barefoot running and reduce energy loss during impact. We compared footstrike angle (FSA), vertical average (VALR) and instantaneous (VILR) loading rates, energy loss and initial vertical stiffness between two shoe conditions. Runners demonstrated a decreased FSA while running in minimalist shoes with lug platform than traditional shoes (= 0.003; Cohen’s = 0.918). However, we did not observe a landing pattern transition. VALR and VILR between two footwear conditions showed no significant difference (= 0.191–0.258; Cohen’s = 0.304–0.460). Initial vertical stiffness (= 0.032; Cohen’s = 0.671) and energy loss (= 0.044; Cohen’s = 0.578) were greater when running in minimalist shoes with lug platform. The results show that minimalist shoes with lug platform reduce the FSA but may not lead to a landing pattern switch or lower vertical loading rates. Interestingly, the new shoe design leads to a greater energy loss than traditional running shoes, which could be explained by a higher initial vertical stiffness.  相似文献   

10.
Fencing is a high-intensity sport involving dynamic movements such as the lunge exposing the musculoskeletal system to high impact forces, which emphasises the importance of the shock attenuating properties of footwear as a factor in the prevention of injury. The aim of this study was to investigate the magnitudes of the transient axial impact shock experienced at the tibia between traditional fencing shoes and standard athletic footwear during the impact phase of the fencing lunge. Peak tibial shock was measured in 19 male fencers in 4 different footwear conditions using an accelerometer placed on the distal aspect of the tibia. The standard footwear (11.08 g and 8.75 g for squash and running shoe, respectively) resulted in significant (p < 0.01) reductions in peak impact shock in comparison to the traditional fencing shoes (15.93 g and 13.97 g for the Adidas and Hi-Tec shoe, respectively). No significant differences were found between the running and squash shoes (p = 0.09) or between the fencing shoes (p = 0.48). The documented reduction in impact shock found suggests that running or squash specific footwear may reduce overuse injury occurrence, indicating that there is justification for a re-design of fencing shoes.  相似文献   

11.
Shoe manufacturers launch running shoes with increased (e.g., maximalists) or decreased (e.g., minimalists) midsole thickness and claim that they may prevent running injury. Previous studies tested footwear models with different midsole thicknesses on the market but the shoe construct was not strictly comparable. Therefore, in the present study, we examined the effect of midsole thickness, from 1-mm to 29-mm, in a standard test shoe prototype on the vertical loading rates, footstrike angle and temporal spatial parameters in distance runners. Fifteen male habitual rearfoot strikers were recruited from local running clubs. They were asked to run on an instrumented treadmill in shoes with different midsole thicknesses. We found significant interactions between midsole thickness with vertical loading rates (< 0.001), footstrike angle (= 0.013), contact time (< 0.001), cadence (= 0.003), and stride length (= 0.004). Specifically, shoes with thinner midsole (1- and 5-mm) significantly increased the vertical loading rates and shortened the contact time, when compared with thicker midsole shoes (25- and 29-mm). However, we did not observe any substantial differences in the footstrike angle, cadence and stride length between other shod conditions. The present study provides biomechanical data regarding the relationship between full spectrum midsole thicknesses and running biomechanics in a group of rearfoot strikers.  相似文献   

12.
ABSTRACT

Loading rates have been linked to running injuries, revealing persistent impact features that change direction among three-dimensional axes in different footwear and footstrike patterns. Extracting peak loads from ground reaction forces, however, can neglect the time-varying loading patterns experienced by the runner in each footfall. Following footwear and footstrike manipulations during laboratory-based overground running, we examined three-dimensional loading rate-time features in each direction (X, Y, Z) using principal component analysis. Twenty participants (9 M, 11 F, age: 25.3 ± 3.6 y) were analysed during 14 running trials in each of two footwear (cushioned and minimalist) and three footstrike conditions (forefoot, midfoot, rearfoot). Two principal components (PC) captured the primary loading rate-time features (PC1: 42.5% and PC2: 22.8% explained variance) and revealed interaction among axes, footwear, and footstrike conditions (PC1: F (2.1, 40.1) = 5.6, p = 0.007, η 2 = 0.23; PC2: F (2.0, 38.4) = 62.3, p < 0.001, η 2 = 0.77). Rearfoot running in cushioned footwear attenuated impact loads in the vertical direction, and forefoot running in minimalist footwear attenuated impact loads in the anterior-posterior and medial-lateral directions relative to forefoot running in cushioned shoes. Loading patterns depend on footwear and footstrike interactions, which require shoes that match the runner’s footstrike pattern.  相似文献   

13.
Research to enhance running performance has led to the design of a leaf spring-structured midsole shoe (LEAF). In treadmill running, it has been shown that LEAF led to an increased running economy and increased stride length (SL) through a horizontal foot shift during stance compared to a standard foam shoe (FOAM). The purpose of this study was to analyse whether (a) these findings can also be observed in overground running and (b) relations exist between spatio-temporal variables and running economy. Ten male long-distance heel-strike runners ran at their individual 2?mmol/l blood lactate speed with LEAF and FOAM in randomized order. Kinematic data were recorded with an inertial measurement unit synchronized with 2D video. Oxygen consumption was measured using an automated metabolic gas analysis system. Blood lactate was collected after each run. The strike pattern was unaffected by LEAF. SL was increased by 0.9?±?1.1?cm (95% CI 0.2 to 1.5; p?=?.040; dz?=?0.76), stride rate (SR) was reduced by ?0.4?±?0.3?strides/min (95% CI ?0.6 to ?0.1; p?=?.029; dz?=?0.82) and oxygen consumption tended to be reduced by 1% (?0.4?±?0.6?ml/min/kg; 95% CI ?0.8 to 0.0; p?=?.082; dz?=?0.62) when running with LEAF compared to FOAM. Changes in oxygen consumption in LEAF were correlated with SL (r?=?0.71; p?=?.022) and SR (r?=??0.68; p?=?.031). It can be concluded that LEAF has the potential to cause small changes in spatio-temporal variables during running. Runners increasing SL and decreasing SR in response to LEAF can achieve small improvements in running economy, which is beneficial in terms of performance.  相似文献   

14.
ABSTRACT

The choice of marathon racing shoes can greatly affect performance. The purpose of this study is to metabolically and mechanically compare the consumer version of the Nike Vaporfly 4% shoe to two other popular marathon shoes, and determine differences in running economy. Nineteen subjects performed two 5-minute trials at 4.44m/s wearing the Adidas Adios Boost (AB), Nike Zoom Streak (ZS), and Nike Vaporfly 4% (VP) in random order. Oxygen uptake was recorded during minutes 3–5 and averaged across both shoe trials. On a second day, subjects wore reflective markers, and performed a 3-minute trial in each shoe. Motion and force data were collected over the final 30 seconds of each trial. VP oxygen uptake was 2.8% and 1.9% lower than the AB and ZS. Stride length, plantar flexion velocity, and center of mass vertical oscillation were significantly different in the VP. The percent benefit of the VP over AB shoe was predicted by subject ground time. These results indicate that use of the VP shoe results in improved running economy, partially due to differences in running mechanics. Subject variation in running economy improvement is only partially explained by variation in ground time.  相似文献   

15.
PurposeThis study aimed to determine the independent effect of the curved carbon-fiber plate in the Nike Vaporfly 4% shoe on running economy and running biomechanics.MethodsFifteen healthy male runners completed a metabolic protocol and a biomechanics protocol. In both protocols participants wore 2 different shoes, an intact Nike Vaporfly 4% (VFintact) and a cut Nike Vaporfly 4% (VFcut). The VFcut had 6 medio-lateral cuts through the carbon-fiber plate in the forefoot to reduce the effectiveness of the plate. In the metabolic protocol, participants ran at 14 km/h for 5 min, twice with each shoe, on a force-measuring treadmill while we measured metabolic rate. In the biomechanics protocol, participants ran across a runway with embedded force plates at 14 km/h. We calculated running economy, kinetics, and lower limb joint mechanics.ResultsRunning economy did not significantly differ between shoe conditions (on average, 0.55% ± 1.77% (mean ± SD)) worse in the VFcut compared to the VFintact; 95% confidence interval (–1.44% to 0.40%). Biomechanical differences were only found in the metatarsophalangeal (MTP) joint with increased MTP dorsiflexion angle, angular velocity, and negative power in the VFcut. Contact time was 1% longer in the VFintact.ConclusionCutting the carbon-fiber plate and reducing the longitudinal bending stiffness did not have a significant effect on the energy savings in the Nike Vaporfly 4%. This suggests that the plate's stiffening effect on the MTP joint plays a limited role in the reported energy savings, and instead savings are likely from a combination and interaction of the foam, geometry, and plate.  相似文献   

16.
BackgroundCompared to conventional racing shoes, Nike Vaporfly 4% running shoes reduce the metabolic cost of level treadmill running by 4%. The reduction is attributed to their lightweight, highly compliant, and resilient midsole foam and a midsole-embedded curved carbon-fiber plate. We investigated whether these shoes also could reduce the metabolic cost of moderate uphill (+3°) and downhill (–3°) grades. We tested the null hypothesis that, compared to conventional racing shoes, highly cushioned shoes with carbon-fiber plates would impart the same ~4% metabolic power (W/kg) savings during uphill and downhill running as they do during level running.MethodsAfter familiarization, 16 competitive male runners performed six 5-min trials (2 shoes × 3 grades) in 2 Nike marathon racing-shoe models (Streak 6 and Vaporfly 4%) on a level, uphill (+3°), and downhill (–3°) treadmill at 13 km/h (3.61 m/s). We measured submaximal oxygen uptake and carbon dioxide production during Minutes 4–5 and calculated metabolic power (W/kg) for each shoe model and grade combination.ResultsCompared to the conventional shoes (Streak 6), the metabolic power in the Vaporfly 4% shoes was 3.83% (level), 2.82% (uphill), and 2.70% (downhill) less (all p < 0.001). The percent of change in metabolic power for uphill running was less compared to level running (p = 0.04; effect size (ES) = 0.561) but was not statistically different between downhill and level running (p = 0.17; ES = 0.356).ConclusionOn a running course with uphill and downhill sections, the metabolic savings and hence performance enhancement provided by Vaporfly 4% shoes would likely be slightly less overall, compared to the savings on a perfectly level race course.  相似文献   

17.
One prominent pattern emerging from a review of the literature on sport shoes and biomechanics is the observation that many effects are the indirect result of shoe‐induced adjustments in movement, i.e. a particular shoe characteristic elicits a kinematic adaptation which in turn has secondary consequences on kinetics and on injury and performance. For example, in addition to its variable effects on peak forces, cushioning system design has been shown to alter electromyographic patterns and to affect knee flexion during foot strike and affect indirectly the economy of running. Mediolateral stability as measured by rearfoot kinematics is strongly influenced by shoe design features such as heel lift, and sole hardness and geometry. The frictional properties of the shoe and surface interface have also been shown to affect kinematics in a way that in turn affects the recorded frictional forces themselves. Such kinematically mediated responses are the most provocative result of studies of the biomechanical effects of footwear. It is becoming apparent that the shoe can be a powerful tool for manipulating human movement. The abundance of shoe design possibilities coupled with the body's tendency to adjust in predictable ways to shoe mechanical characteristics have given us a new way to manipulate human kinematics and kinetics, as well as a convenient model for studying biomechanical adaptation.  相似文献   

18.
Kinematically mediated effects of sport shoe design: a review   总被引:1,自引:0,他引:1  
One prominent pattern emerging from a review of the literature on sport shoes and biomechanics is the observation that many effects are the indirect result of shoe-induced adjustments in movement, i.e. a particular shoe characteristic elicits a kinematic adaptation which in turn has secondary consequences on kinetics and on injury and performance. For example, in addition to its variable effects on peak forces, cushioning system design has been shown to alter electromyographic patterns and to affect knee flexion during foot strike and affect indirectly the economy of running. Mediolateral stability as measured by rearfoot kinematics is strongly influenced by shoe design features such as heel lift, and sole hardness and geometry. The frictional properties of the shoe and surface interface have also been shown to affect kinematics in a way that in turn affects the recorded frictional forces themselves. Such kinematically mediated responses are the most provocative result of studies of the biomechanical effects of footwear. It is becoming apparent that the shoe can be a powerful tool for manipulating human movement. The abundance of shoe design possibilities coupled with the body's tendency to adjust in predictable ways to shoe mechanical characteristics have given us a new way to manipulate human kinematics and kinetics, as well as a convenient model for studying biomechanical adaptation.  相似文献   

19.
Abstract

Ethylene vinyl acetate and polyurethane are widely used materials for shoe midsoles. The present study investigated the durability of running shoes made from ethylene vinyl acetate and one type of polyurethane (polyurethane-1), which have similar hardness and density, and another type of polyurethane (polyurethane-2), which has high hardness/density. All shoes differed from one another only in terms of the midsole material used. Eight male runners participated in the present study and used the shoes to run 500 km (10 × 50 km). The cushioning and energy return characteristics of each shoe were measured using an impact tester before and after each 50-km run. The results showed that as the running distance increased, the peak force of midsole materials changed with different patterns. Ethylene vinyl acetate and polyurethane-1 showed greater cushioning than polyurethane-2 over 500 km (ethylene vinyl acetate, 918.2–968.0 N; polyurethane-1, 909.6–972.9 N; polyurethane-2, 983.0–1105.6 N). Polyurethane-1 showed greater cushioning from 200 km to 300 km compared with 0 km (0 km, 972.9 ± 66.3 N; 200 km, 909.6 ± 61.2 N; 250 km, 921.9 ± 51.2 N; 300 km, 924.6 ± 51.9 N). The cushioning of ethylene vinyl acetate shoes was diminished after 500 km compared with that at 0 km (968.0 ± 25.9 N vs. 921.1 ± 20.1 N). Ethylene vinyl acetate resulted in greater energy returns than polyurethane. Both foam category and hardness/density affected the critical biomechanical properties of running shoes.  相似文献   

20.
PurposeWe compared running economy (RE) and 3-km time-trial (TT) variables of runners wearing Nike Vaporfly 4% (VP4), Saucony Endorphin lightweight racing flats (FLAT), and their habitual running (OWN) footwear.MethodsEighteen male recreational runners (age = 33.5 ± 11.9 year (mean ± SD), peak oxygen uptake (VO2peak) = 55.8 ± 4.4 mL/kg·min) attended 4 sessions approximately 7 days apart. The first session consisted of a VO2peak test to inform subsequent RE speeds set at 60%, 70%, and 80% of the speed eliciting VO2peak. In subsequent sessions, treadmill RE and 3-km TTs were assessed in the 3 footwear conditions in a randomized, counterbalanced crossover design.ResultsOxygen consumption (mL/kg·min) was less in VP4 (from 4.3% to 4.4%, p ≤ 0.002) and FLAT (from 2.7% to 3.4%, p ≤ 0.092) vs. OWN across intensities, with a non-significant difference between VP4 and FLAT (1.0%–1.7%, p ≥ 0.292). Findings related to energy cost (W/kg) and energetics cost of transport (J/kg·m) were comparable. VP4 3-km TT performance (11:07.6 ± 0:56.6 mm:ss) was enhanced vs. OWN by 16.6 s (2.4%, p = 0.005) and vs. FLAT by 13.0 s (1.8%, p = 0.032). The 3-km times between OWN and FLAT (0.5%, p = 0.747) were similar. Most runners (n = 11, 61%) ran their fastest TT in VP4.ConclusionOverall, VP4 improved laboratory-based RE measures in male recreational runners at relative speeds compared to OWN, but the RE improvements in VP4 were not significant vs. FLAT. More runners exhibited better treadmill TT performances in VP4 (61%) vs. FLAT (22%) and OWN (17%). The variability in RE (–10.3% to 13.3%) and TT (–4.7% to 9.3%) improvements suggests that responses to different types of shoes are individualized and warrant further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号