首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
数学思想是数学解题的灵魂.在因式分解过程中蕴含着许多数学思想,如果能灵活地运用这些数学思想,往往能更好地解决因式分解问题.一、整体思想用整体思想分解因式,就是将要分解的多项式中的某些项看成一个整体而加以分解.例1把多项式(x2-1)2+6(1-x2)+9分解因式.分析:把(x2-1)看成一个整体,利用完全平方公式进行分解,最后再利用平方差公式分解.解:(x2-1)2+6(1-x2)+9=(x2-1)2-6(x2-1)+9=[(x2-1)-3]2=(x2-4)2=(x+2)2(x-2)2.例2把多项式(a+b)2-4(a+b-1)分解因式.分析:此多项式既无公因式可提,又无公式可套用,似乎无从入手.若视a+b为一个整体,局部…  相似文献   

2.
换元法是数学中的一个重要的思想方法 .巧妙地利用换元法解题 ,可以使问题化繁为简 ,化难为易 .例 1 已知 x 3- x- 1 =2 ,求x 3 x- 1的值 .解 设 x 3 x- 1 =m,将此式与已知式相乘可得 ( x 3) - ( x- 1 ) =2 m,∴m=2 ,即 x 3 x- 1 =2 .评注 这种在求某代数式的值时 ,把这个式子的本身进行换元的方法可称之为“自身代换 .”例 2 解方程( 7 4 3) x2 ( 2 3) x- 2 =0 .解 因为 ( 2 3) 2 =7 4 3,故可设 t=( 2 3) x,则原方程即t2 t- 2 =0 ,解得 t1 =1 ,t2 =- 2 ,∴x1 =( 2 - 3) t1 =2 - 3,x2 =( 2 - 3) t2 =- 4 2 3.评…  相似文献   

3.
在竞赛中 ,经常出现一类根据已知方程 ,对“不对称”的代数式进行求值的题型 ,这类问题宜用“对称设元法”将题中的代数式转化为对称的代数式来处理 ,下面举例说明 .例 1 设 x1 ,x2 是二次方程 x2 x- 3=0的两个根 ,那么 x1 3- 4 x2 2 1 9的值等于(1 996年全国初中数学竞赛题 )(A) 4  (B) 8  (C) 6  (D) 0解 根据根与系数的关系得 :x1 x2 =1 ,x1 x2 =- 3,∴ x1 - x2 =± (x1 - x2 ) 2 =± 1 3.记 A=x1 3- 4 x2 2 1 9,B=x2 3- 4 x1 2 1 9,则A B=(x1 3 x2 3) - 4 (x2 2 x1 2 ) 38=(x1 x2 ) [(x1 x2 ) 2 - 3x1 x2 ]…  相似文献   

4.
近年来,各种有关中学数学教学的小册子以及开辟“错在哪里?”或“作业讲评”等专栏的杂志常把用判别式解下列方程作为典型“错误”之一并加以“分析”。先摘录如下: “求 x~2-2xsin1/2πx+1=0的一切实根错解∵方程有实根,∴⊿=(-2sin1/2πx)~2-4≥0,即sin~21/2πx≥1;又sin~21/2πx≤1,故sin~21/2πx=1,  相似文献   

5.
我们可以用不同观点,从不同角度,用不同的呈现方式来观察中学数学.如果选择恩格斯观察数学的角度———数学是研究数量关系与空间形式的科学,则数学的研究对象有的可以纳入单纯状态的“数量关系”或“空间形式”,有的可以纳入两者混合状态的“数形结合”.而中学数学中的最值问题在两者中均占有相当的篇幅,如函数的值域,空间图形间的距离,线性规划问题等.其条件不同,展现形式各异,求解方法也灵活多样,本文借助两例,谈一下平面几何知识在求最值中的应用.例1求函数y=x2 4x 7 x2-2x 4的最小值分析如图1,因为x2 4x 7=(x 2)2 (0-3)2可视为点P(x,0…  相似文献   

6.
“换元法”是一种重要的数学思想方法,形式多种多样,也是解题中常用的转化策略,下面举例说明如何用“换元法”解决数学问题。一、式子换元1、局部换元例1、分解因式(x2 x 3)(x2-6x 3) 12x2解:设x2 3=y,则原式=(y x)(y-6x) 12x2  相似文献   

7.
因式分解不仅是同学们进一步学习数学的重要工具 ,而且是各级各类考试经常命题的知识点 .由于因式分解这种恒等变形没有一种逻辑手段可以达到 ,所以需要有较强的创造性思维能力才能完成 .初级中学教材只介绍了四种常用方法 ,为弥补教材不足 ,下面介绍几种技巧性较强的因式分解方法 .1 换元分解法例 1 因式分解 :(x +1 ) (x +2 ) (x +3) (x +4) - 2 4 .解 原式 =(x +1 ) (x +4) .(x +2 ) (x +3)- 2 4=(x2 +5x +4) (x2 +5x +6) - 2 4令 x2 +5x +5 =y,则原式 =(y - 1 ) (y +1 ) - 2 4 =y2 - 2 5=(y - 5) (y +5)=(x2 +5x) (x2 +5x +1 0 )=x(x…  相似文献   

8.
数学问题考查的不仅仅是同学们的数学思维能力,同时也考查同学们对数学语言的理解能力,即对题目给出的数学语言怎样理解,理解后怎样转化为熟悉的数学问题并进行解决的能力.所以做数学题目时,在理解数学语言上要“咬文嚼字”.下面举几个例子说明.“咬文嚼字”一“过”和“在”不同【例1】曲线y=x3+x+1过点(1,3)处的切线方程是.错解切线的斜率为y′|x=1=(3x2+1)|x=1=4,故所求的切线方程是y=4(x-1)+3,即4x-y-1=0.剖析“过”点(1,3)的切线方程,说明(1,3)不一定是切点,这时切线可能不只一条.就必须通过设切点来求.设切点坐标为(x0,y0),对y=x3+x+1求导得y′=3x2+1,故切线的斜率为3x02+1,于是切线方程为y=(3x02+1)(x-x0)+y0,由于点(1,3)在切线上,故有3=(3x02+1)(1-x0)+y0①又切点在曲线上,即y0=x03+x0+1②解①②得x0=1y0=3或x0=-21.y0=83当x0=1y0=3时,切线斜率为4,方程为4x-y-1=0;当x0=-21y0=83时,切线斜率为47,方程为7x-4y+5=0.错解是求曲线y=x3+x+1在点(...  相似文献   

9.
问题 已知x∈[1/2,2],求函数y=(5~(1/2)-2)/x的最小值。 这是一道非常规题,看题后一般想到的是所谓“△”法:易知y>0,故可得同解方程y~2x~2-5x 2-0.因x∈R,故△-25-8y~2≥0,得y≤5·2~(1/2)/4. 但这只能说明y可能有最大值5·2~(1/2)/4,但通过验证后发现此路不通! “丰富而有条理的知识储备是解题者的至宝”(波利亚语),也是产生丰富联想的源泉,而数学问题的解决,其根本法宝也就是思维的不断转换。  相似文献   

10.
存在性问题是指判断满足某种条件下的结论是否存在的数学问题。解决这类问题的方法有两种,一种是具体找出满足条件的数学对象;另一种是假定其存在,通过推理导致矛盾,从而判断所讨论的数学对象不存在,现举例如下,供同学们参考。例1 已知抛物线y=x2-5mx+4m2(m为常数)(1)求证:此抛物线与x轴一定有交点;(2)是否存在正数m,使已知抛物线与x轴两个交点的距离等于6m-1? 若存在,求出m的值,若不存在,说明理由。证明(1):∵△=b2-4ac=(-5m)2-4×1×4m2=25m2-16m2=9m2≥0     ∴此抛物线与x轴一定有交点。(2)假设存在正数m,使已知抛物线与x轴两个交…  相似文献   

11.
在中考复习中,注意某些公式、法则的适用范围以及它的限制条件,是很有必要的.在本文中,我们一起探讨数学中考中容易失分的几个问题.希望能引起同学们的重视,避免摔倒在别人多次绊倒的地方.一、忽视根的判别式例1设x1,x2是方程2x2-4mx+2m2+3m-2=0的两个根.当m为何值时,x12+x22有最小值?求出这个最小值.错解:已知方程的两根是x1,x2,∴x1+x2=2m,x1·x2=2m2+3m-22 .∴x12+x22=(x1+x2)2-2x1x2=(2m)2-2×2m2+3m-22=2m2-3m+2=2(m-34)2+78.(1)∴当m=34时,x12+x22有最小值78.分析:∵x1,x2是原方程的两实根,∴Δ=(-4m)2-4×2(2m2+3m-2)≥0.解得:m≤23.…  相似文献   

12.
整体思想是一种重要的数学思想 ,其思维方法是指在思考问题时 ,把注意力放在问题的整体上 ,把一些看上去彼此独立 ,实质上紧密联系的量 ,作为一个整体来考虑 ,达到顺利解决问题的目的 ,现举例说明 ,供参考 .一、整体代入例 1 已知 x2 + x - 1=0 ,求 x3 + 2 x2 + 2 0 0 1的值 .分析 :若解方程 x2 + x - 1=0 ,求出 x,再代入 ,计算求值 ,思路自然 ,但计算繁难 .若将所求代数式分解变形 ,运用整体思想 ,则可化难为易 .解 :原式 =( x2 + x - 1) ( x + 1) + 2 0 0 2 .∴当 x2 + x - 1=0时 ,原式 =2 0 0 2 .二、整体固定例 2 化简 2 ( 5- 3)4 - 1…  相似文献   

13.
分式方程和无理方程的增根问题是近几年中考以及竞赛命题的热点和难点,由于这类问题并不是把所有的条件都直接明了地告诉考生,而是把某些条件隐含在问题的结论或数学式子中,解答时,别说是考生,就是数学教育工作者也难以防范,现举例说明,供借鉴. 例1 方程2x/(x+1)-k/(x2+x)=x+1/x只有唯一解,求k. 同学们是这样解答的: 去分母,得2x2-k=(x+1)2, x2-2x-k-1=0. 因为方程只有唯一解, ① 所以△=0,即4-4(-k-1)=0.  相似文献   

14.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

15.
1.约分后通分例1 计算 (x2 2xy y2)/(x2y xy2)-(x2-2xy y2)/(x2y-xy2) 分析分式的分子与分母有公因式,故先约分,然后通分.解原式=(x y)2/xy(x y)-(x-y)2/xy(x-y) =(x y)/(xy)-(x-y)/(xy)=(2y)/(xy)=2/x. 2.整体通分例2 计算a 2-(4/(2-a).分析把a 2化成(a 2)/1,再进行通分.  相似文献   

16.
在初中数学竞赛中,常出现一类代数式求值问题,如: (1) 已知x=2-3~(1/2),求x~4-5x~3+6x~2+5x的值。(1986年上海市初中数学竞赛试题) (2) 若x=(5~(1/2)-1)/2,则x~4+x~2+2x-1=____。(第六届全国部分省市初中数学通讯赛试题) (3) 已知x=(111~(1/2)-1)/2,求多项式(2x~5+2x~4-53x~3-57x+54)~(1989)值。(1989年浙江省初中二年级数学竞赛试题) (4) 已知a=(22~(1/2)+5~(1/2))/(5~(1/2)-2~(1/2))求值:a~5-7a~4+6a~3-7a~2+11a+13。(第三届求是杯数学竞赛初二试题) (5) 当x=3~(1/2)-1时,代数式 (x+4)/(x~3+6x~2+5x-3~(1/2)-15)的值是多少?(88—89学年度广州、福州、武  相似文献   

17.
拆项是数学学习中重要的一种解题方法 ,它指的是将代数式中的某项有意识地变形成两项或多项的和。灵活地应用这种方法 ,可很好地利用有关的公式、定理和已知条件 ,从而使解题简便易行。一、用于有理数计算例 1.计算 9999× 9999+19999。解 :原式 =(9999× 9999+9999) +10 0 0 0=9999× (9999+1) +10 0 0 0=10 0 0 0× (9999+1)=10 0 0 0 0 0 0 0。二、用于分解因式例 2 .分解因式 x3 +2 x2 - 5 x- 6。解 :原式 =(x3 +2 x2 +x) - (6 x+6 )=x(x+1) 2 - 6 (x+1)=(x+1) (x- 2 ) (x+3)。例 3.分解因式 x4 +x2 +2 ax+1- a2 。解 :原式 =(x4 +2 x2 …  相似文献   

18.
我认为“坐标轴平移”教学可提前到高一“函数”章内进行,这对函数的有些问题可得到更合理的解决。例如画出y=(1-x)/(1+x)的简图(人民出版社高中代数第一册P58)只要把原式变成y+1=2/(x+1)平移坐标轴到新原点O′(-1、-1)后,便化归为反比例函数y′=2/x得图(1)。又如求函数  相似文献   

19.
数形结合在解题中的应用   总被引:2,自引:0,他引:2  
数形结合是中学阶段要求掌握的数学思想之一。我们在解题中充分应用这种思想方法,对培养学生的数学素质会有很大的帮助。利用数形结合解题的关键是建立数形对应,把握好数形转化。将复杂问题简单化、明朗化,抽象问题形象化、具体化,从而达到解决问题的目的。下面举几例说明。例1 求函数y=(x~2-2x 5)~(1/2) (x~2-4x 3)~(1/2)的最小值  相似文献   

20.
数学解题中的化归策略   总被引:1,自引:0,他引:1  
“化归”是指把未解决的数学问题 ,通过某种转化过程 ,归结到一类已经能解决或者比较容易解决的问题中去 ,最终求得原问题的解答的一种手段和方法 .1.复杂向简单化归一个比较复杂的数学问题 ,往往是由几个简单问题构成的 .因此 ,只要把这些简单问题一一加以解决 ,就可以使复杂问题得到解决 .例 1 解方程组3 (x +y -1) +2 (x -y) =64 ,4(x +y -1) +5 (y -x -3 ) =78.①②解 :设x +y -1=m ,x -y +3 =n .整理得3m +2n =70 ,4m -5n =78. 解得 m =2 2 ,n =2 ,即  x +y -1=2 2 ,x -y +3 =2 .解这个方程组得x =11,y =12 .评注 :把方程组中重复出…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号