首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文试图从牛顿二项式定理和杨辉三角形数阵出发,将杨辉三角形加以推广,旨在建立牛顿多项式的系数数阵。一、牛顿二项式定理和杨辉三角形教阵。著名的二项式展开式 (α 6)~n=C_n~0α~n C_n~1α~(n-1)b C_n~2α~(n-2)b~2 …… C_n~rα~(n-r)b~r … C_n~nb~n (1)是英国著名的数学家牛顿首先提出的,并借助于组合种数公式的性质:C_n~r=C_n~(n-r)和C_n~r C_n~(r-1)=C_(n-1)~r加以证明的。因此,称此二项式的展开式为牛顿二项式定理。关于牛顿二项式定理的系数C_n~r,很早就有人研究。早在牛顿之前四百多年,我们中  相似文献   

2.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

3.
现行高三数学中学到了二项式定理:(a+b)~n=C_n~0a~n+a_n~1a~(n-1)b+C_n~2a~(n-2)b~2+……+C_n~nb~n。若令a=1,b=1,代入上式,就得到(1+1)~n=C_n~0+C_n~1+C_n~2+……+C_n~n,这是全组合公式,即从n个元素中一个也不取,取一个、取二个、……、取n个元素的组合总数,那么(1+2)~n的展开式的组合原理是什么呢?或者说,它的数学模型是什么?下面我们先看一个具体问题。  相似文献   

4.
由二项式定理:(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+…+C_n~nb~n,(a-b)~n=C_n~0a~n-C_n~1a~(n-1)b+…+(-1)~nC_n~nb~n相加可得 (a+b)~n+(a-b)~n =2(C_n~ca~n+C_n~2a~(n-2)b~2+C_n~4a~(n-4)b~4+…)。(*)合理利用(*)式,可解答几类难度较大的问题。  相似文献   

5.
(a+b)~n展开式的二项式系数C_n~0、C_n~1、C_n~2…C_n~n从左至右先逐渐递增到最大值C_n~(n/2)(n为偶数)[或C_n~(n-1/2)、C_n~(n+1/2)(n为奇数)]时再逐渐减小,且有C_n~r=C_n~(n-r)(r=0,1,2,…n)。利用这个性质可以解组合不  相似文献   

6.
<正>通过学习我们知道:1.(a+b)~2=a~2+2ab+b~22.(a+b)~3=a~3+3a~2b+3ab~2+b~33.(a+b)~n=a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…C_n~(n-1)ab~(n-1)+b~n这是二项式定理,在学习中我发现,关于(a+b)~n的展开式也可以给出如下证明:(a+b)~n是n个(a+b)相乘,属于多项式乘多项式的问题,每个(a+b)在相乘  相似文献   

7.
我们知道,由二项式定理 (a b)~n=a~n C_1~na~(n-1)b … C_n~(n-1)ab~(n-1) b~n可得 (a b)~n=aM_1 b~n; (a b)~n=a~2M_2 nab~(n-1) b~n; (a b)~n=a~n abM_i b~n; …………其中,M_i(i=1,2,3,…)是整式。利用上述性质可以证明一类多项式的整除问题。兹举例如下(本文中的n均为自然数): 例1 求证(x 1)~(2n 1) x~(n 2)能被x~2 x 1整除。  相似文献   

8.
关于组合恒等式的证明方法大体可归纳为如下一些: 一、在二项展开式中直接代入特别值而得组合恒等式二项展开式为 C_n~0 C_n~1x C_n~2x~2 … C_n~nx~n=(1 x)~n,其中 C_n~k=(n(n-1)…(n-k 1))/(k!)=(n!)/((n-k)!k!),k≤n,且规定C_n~0=1。若令x=1得 C_n~0 C_n~1 C_n~2 … C_n~n=2~n.(1) 令x=-1得 C_n~0-C_n~1 C_n~2-… (-1)~nC_n~n=0,(2)或 C_n~0 C_n~2 …=C_n~1 C_n~3 … *) (3) *)本  相似文献   

9.
大家熟知的牛顿二项式定理是指下面的公式:(a+b)~n=c_n~0a~n+c_n~1a~(n-1)b+c_n~2a~(n-2)b~2+…+c_n~nb~n,(n∈N) (1)式(1)的右边的式子叫(a+b)~n的二项展开式,在教科书上,公式(1)的证明通常是采用数学归纳法,在本文中,我们将给二项式定理一种新的、有趣的证法,这种证法依赖于函数方程的解。  相似文献   

10.
我们知道,二项展开式(x y)~n=sum from i=0 to n(C_n~ix~(n-i)y~i)的各项系数C_n~0,C_n~1,…,C_n~n的大小规律具有单峰性,即 当n为偶数时,C_n~0C_n~(n/2 1>)…>C_n~n; 当n为奇数时,C_n~0C_n~((n 1)/2) 1>…>C_n~n。 实际上,(ax by)~n=(sum from i=0 to n(C_n~ia~(n-i)b~ix~(n-i)y~i)(a,b∈R,ab≠0,n∈N_ ) ①的各项系数的绝对值 g_(i 1)=C_n~i|a|~(n-i)|b|~i(i=0,1,…,n) ②的大小规律也具有单峰性,本文给出这方面的结论。  相似文献   

11.
中学代数教材中,在讲了二项式定理后,有一些关于二项式系数求和的习题。例如,1 C_n~1 C_n~2 … C_n~n=2~n ①1 C_n~2 C_n~4 …=C_n~1 C_n~3 …=2~(n-1) ②(注②式中的和是有限项的,最后一项是C_n~(n-1)或C_n~n。本文后面带有省略号的求和都是有限项的)。  相似文献   

12.
每年全国及各省市文理科的三十多套试卷中,大多有关于二项式定理的题目.本文对2009年的二项式定理考题归类解析,以使考生在备考复习中,克服盲目,明确方向,突出重点,提高效率.一、利用展开式的通项公式在(a+b)~n的展开式中,第r+1项是T_(r+1)=C_n~ra~(n-r)b~r.利用这个通项公式,可以解决展开式中某一指定项的问题,如常数项,含某字母若  相似文献   

13.
二项式系数C_n~0,C_n~1,C_n~2,…,C_n~n中奇数的个数是一个十分有趣的问题。它等价于求出二项展开式(1 x)~n中奇数项的问题。对n=0,1,2,3,4,…时的特殊情况,计算后可以得出这样一个结论:二项式系数中奇数的个数是2的一个方幂。自然要问它是2的几次方?或者对具体的n怎样来求出这个数?本文将证明: 定理 (1 x)~n中奇系数项的个数是2~k其中k是把n写成二进制的非零数字的个数。我们首先证明几个引理,然后利用它们来证明定理。引理1 在n=2~m-1时,C_n~(?)全是奇数。  相似文献   

14.
二项式定理是研究(a b)~n(n是自然数)的展开式中各项的系数、指数,项数以及符号的规律。本专题教材的基本要求是: 1.当次数不太高即3相似文献   

15.
1988年全国高中数学联赛第一试最后一题:已知a、b为正实数,且1/a 1/b=1,试证对每一个n∈N, (a b)~n-a~n-b~n≥2~(2n)-2~(n 1)(*) 这个不等式从形式上看较难证明,经过研究,笔者发现它有许多证法,择其简单的四种介绍如下: 证一应用二项式定理,得(a b)~n-a~n-b~n=C_n~1a~(n-1)b C_n~2a~(n-2)b~2 … C _n~(n-1)ab~(n-1) (1)根据组合数性质C_n~k=C_n~(n-k),由(1)得(a b)~n-a~n-b~n=C_n~1ab~(n-1) C_n~2a~2b~(n-2) 十… C_n~(n-1)a~(n-1)b (2)(1) (2)后两边除以2得  相似文献   

16.
一九八二年浙江省中专(技校)统一招生高中毕业文化程度数学试题第二题第(1)小题的题目是“已知(x+2/x~2)~n展开式中第6项的系数与第4项的系数的比是6∶1.求n”.命题者本意是第6项的系数为C_n~52~5,第4项的系数为C_n~32~3.这样解得n=9。全日制十年制高中课本《数学》关于二项式定理的系数问题是区分为二项展开式的系数和指定项的系数两种情况的。第三册第151页“二项展开式各项的系  相似文献   

17.
解二项式问题,首先要熟悉二项展开式的通项公式,其次还要掌握以下三个方面:(1)(a+b)~n的展开式的二项式系数之和为2~n.(2)对于(a+b)~n而言,当n为偶数时,其展开式中只有中间一项,即第(n/2+1)项的二项式系数最大;当n为奇数时,其展开式中中间两项,即第(n+1)/2和(n+3)/2项的二项式系数最大.  相似文献   

18.
现行高中数学课本里有这样一道习题:证明(C_n~0)~2+(C_n~1)~2+…+(C_n~n)~2=(2n)!/n!·n!。教材提示利用(1+x)~n·(1+x)~n=(1+x)~(2n),比较等式两边的展开式中含x~n项的二项式系数。除此之外,还可从组合意义  相似文献   

19.
一九八五年全国高等学校招生统一考试数学(理工农医类)第二(4)题是这样一道题:设(3x-1)~6=a_6x~6 a_5x~5 a_x~4 a_3x~3 a_2x~2 a_1x a_0,求a_6 a_5 a_4 a_3 a_2 a_1 a_0的值。在阅卷中发现不少考生在草稿上是通过二项展开公式去求的。这样即便解对,亦非良法。事实上,我们只要对试题稍作分析便知,若在题设中令x=1,则其右边便是所要求值的代数式,而左边为常数2~6,即为所求。这种思想方法其实也正是教材所要求掌握的。高中代数第三册p75例1、例2在证明恒等式C_n~0 C_n~1 C_n~2 … C_n~n=2~n及C_n~0 C_n~2 C_n~4 …=C_n~1 C_n~3 C_n~5 …=2~(n-1)时,就是由对二项展开式中的a、b巧赋特殊值得到的。类似地,  相似文献   

20.
关于二项式定理的证明,课本上用的是数学归纳法。数学教师也未提供其它的证明方法。经过探索,现提供一种新的简捷证法。定理: (a+b)~n=C_n~0+C_n~(n-1)b+···+C_n~ka~(n-k)b~k+···+C_n~(n-1)ab~(n-1)+C_n~nb~n (n∈)N  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号