首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper examines the transferability of successful cueing approaches from text and static visualization research to animations. Theories of visual attention and learning as well as empirical evidence for the instructional effectiveness of attention cueing are reviewed and, based on Mayer’s theory of multimedia learning, a framework was developed for classifying three functions for cueing: (1) selection—cues guide attention to specific locations, (2) organization—cues emphasize structure, and (3) integration—cues explicate relations between and within elements. The framework was used to structure the discussion of studies on cueing in animations. It is concluded that attentional cues may facilitate the selection of information in animations and sometimes improve learning, whereas organizational and relational cueing requires more consideration on how to enhance understanding. Consequently, it is suggested to develop cues that work in animations rather than borrowing effective cues from static representations. Guidelines for future research on attention cueing in animations are presented.  相似文献   

2.
3.
This study was designed to determine whether an interactive three-dimensional presentation depicting liver and biliary anatomy is more effective for teaching medical students than a traditional textbook format presentation of the same material. Forty-six medical students volunteered for participation in this study. Baseline demographic information, spatial ability, and knowledge of relevant anatomy were measured. Participants were randomized into two groups and presented with a computer-based interactive learning module comprised of animations and still images to highlight various anatomical structures (3D group), or a computer-based text document containing the same images and text without animation or interactive features (2D group). Following each teaching module, students completed a satisfaction survey and nine-item anatomic knowledge post-test. The 3D group scored higher on the post-test than the 2D group, with a mean score of 74% and 64%, respectively; however, when baseline differences in pretest scores were accounted for, this difference was not statistically significant (P = 0.33). Spatial ability did not statistically significantly correlate with post-test scores for the 3D group or the 2D group. In the post-test satisfaction survey the 3D group expressed a statistically significantly higher overall satisfaction rating compared to students in the 2D control group (4.5 versus 3.7 out of 5, P = 0.02). While the interactive 3D multimedia module received higher satisfaction ratings from students, it neither enhanced nor inhibited learning of complex hepatobiliary anatomy compared to an informationally equivalent traditional textbook style approach. .  相似文献   

4.
Untimed examinations are popular with students because there is a perception that first impressions may be incorrect, and that difficult questions require more time for reflection. In this report, we tested the hypothesis that timed anatomy practical examinations are inherently more difficult than untimed examinations. Students in the Doctor of Physical Therapy program at Thomas Jefferson University were assessed on their understanding of anatomic relationships using multiple‐choice questions. For the class of 2012 (n = 46), students were allowed to circulate freely among 40 testing stations during the 40‐minute testing session. For the class of 2013 (n = 46), students were required to move sequentially through the 40 testing stations (one minute per item). Students in both years were given three practical examinations covering the back/upper limb, lower limb, and trunk. An identical set of questions was used for both groups of students (untimed and timed examinations). Our results indicate that there is no significant difference between student performance on untimed and timed examinations (final percent scores of 87.3 and 88.9, respectively). This result also held true for students in the top and bottom 20th percentiles of the class. Moreover, time limits did not lead to errors on even the most difficult, higher‐order questions (i.e., items with P‐values < 0.70). Thus, limiting time at testing stations during an anatomy practical examination does not adversely affect student performance. Anat Sci Educ 6: 281–285. © 2013 American Association of Anatomists.  相似文献   

5.
Learning with instructional animations may overstretch limited working memory resources due to intense processing demands associated with transient information. The authors investigated whether explicit instructional advice coupled with a task-specific learner control mechanism (such as a timeline scrollbar) could facilitate the successful self-management of transient information. The effectiveness of a timeline scrollbar that allowed self-pacing and self-sequencing of animations was compared with computer-controlled animations. Experiment 1 demonstrated that a timeline scrollbar (with instructional advice on its strategic use) enhanced the retention of stroke sequences in writing Chinese characters. In Experiment 2, a timeline scrollbar was used in an integrated set of narrated animations dealing with complex scientific information. Retention and comprehension post-tests indicated that although a scrollbar accompanied by instructional advice in its use assisted novice learners, no such effect was found with participants who possessed higher levels of prior knowledge. The findings have implications for the formulation of criteria for the effective incorporation of learner control into the design of instructional animations.  相似文献   

6.
The purpose of the current study was to investigate the effectiveness of interacting with animations using mobile devices on grade 12 students’ spatial and reasoning abilities. The study took place in a grade 12 context in Oman. A quasi-experimental design was used with an experimental group of 32 students and a control group of 28 students. The experimental group studied chemistry using mobile tablets that had a digital instructional package with different animation and simulations. There was one tablet per student. A spatial ability test and a scientific reasoning test were administered to both groups prior and after the study, which lasted for 9 weeks. The findings showed that there were significant statistical differences between the two groups in terms of spatial ability in favour of the experimental group. However, there were no differences between the two groups in terms of reasoning ability. The authors reasoned that the types of animations and simulations used in the current study featured a wide range of three-dimensional animated illustrations at the particulate level of matter. Most probably, this decreased the level of abstractness that usually accompanies chemical entities and phenomena and helped the students to visualize the interactions between submicroscopic entities spatially. Further research is needed to decide on types of scientific animations that could help students improve their scientific reasoning.  相似文献   

7.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

8.
The study of human anatomy is an integral component in the education of future occupational therapists, yet there is a paucity of research that explores the anatomy needs of students and new practitioners. As a follow up from a pilot study that surveyed a small cohort of practicing therapists, this article aimed to determine occupational therapy (OT) practitioners' views on anatomy course structure and content deemed important to include in OT curricula, entry level practitioners' anatomy knowledge, and application of anatomy in current practice. A Likert scale and free text questionnaire was distributed to practicing occupational therapists across the United States. Fifty‐four percent of the participants in this cohort favored a standalone course, as compared to 94% in the pilot study group. Anatomy course content areas were comparable across groups. Systems identified as essential to cover in an OT anatomy course included skeletal, muscular, and nervous. Regions included the upper limb, thorax/trunk, head and neck, and lower limb. Seventy percent of participants in both groups felt that entry‐level practitioners had adequate anatomy knowledge; 30% did not. Practice areas requiring anatomy knowledge included assessment of joint movement, muscle strength, pain, and functional mobility. Qualitative analysis of free text response data revealed the importance of anatomy knowledge in OT assessment and intervention strategies, determining the impact of injury or disease on occupational performance, client safety, and communication with other health care professionals and families. Anat Sci Educ 11: 243–253. © 2017 American Association of Anatomists.  相似文献   

9.
Recent studies exploring the effects of instructional animations on learning compared to static graphics have yielded mixed results. Few studies have explored their effectiveness in portraying procedural-motor information. Opportunities exist within an applied (manufacturing) context for instructional animations to be used to facilitate build performance on an assembly line. The present study compares build time performance across successive builds when using animation, static diagrams or text instructions to convey an assembly sequence for a handheld device. Although an immediate facilitating effect of animation was found, yielding a significantly faster build time for Build 1, this advantage had disappeared by Build 3.  相似文献   

10.
11.
Living AnatoME, a program designed in 2004 by two medical students in conjunction with the Director of Anatomy, teaches musculoskeletal anatomy through yoga and Pilates. Previously offered as an adjunct to the Gross Anatomy course in 2007, Living AnatoME became an official part of the curriculum. Previous research conducted on the program demonstrated its efficacy in providing relaxation and well-being to students who attended. In 2007, with all 144 gross anatomy students required to participate in a 1.5 hour Living AnatoME session on the upper and lower limbs, the impact of the program on students' comprehension of musculoskeletal anatomy was analyzed through the administration of 25-question pre- and post-tests, gauging knowledge in the following domains: upper limb, lower limb, muscle function, palpation, attachment/location, clinical correlate, and control (i.e., material not emphasized during the intervention). Analysis of postintervention tests revealed significant improvement in total Living AnatoME scores as well as in the domains of upper limb, muscle function, and palpation, indicating the possible efficacy of Living AnatoME in teaching anatomy. Performance on control questions also improved, although not significantly, which may indicate the role of other variables (e.g., additional study time) in increased performance.  相似文献   

12.
The purpose of this study was to evaluate the instructional effects of using animations, static figures, PowerPoint bulletins, and e-plus software as chemistry texts with the aid of computer-based technology. This study analyzed the characteristics of students involved in three multimedia courses and their achievement and attitude toward chemistry and learning chemistry. The three samples included in this study involved 257 undergraduate engineering students enrolled in the courses during the academic year in which the study occurred. The results indicate that: (a) students acquired a better understanding of targeted chemistry concepts during the multimedia courses, (b) some categories of students, based on their major area of study, computer use, and attendance status at orientation achieved significantly (p < 0.05) higher post-test scores when adjusted for pre-test performance, and (c) significant differences and Cohen’s effect sizes in attitudes toward chemistry and learning chemistry were detected for students’ level of computer use, disposition toward computer multimedia, gender, and attendance at the multimedia orientation session. It appears to be helpful to incorporate computer-based multimedia (animations, images, sounds) teaching while utilizing constructivist design principles to facilitate students’ chemistry understanding and attitude toward chemistry and learning chemistry.  相似文献   

13.
Best-practice guidelines have incorporated ultrasound in diagnostic and procedural medicine. Due to this demand, the Arizona College of Osteopathic Medicine initiated a comprehensive integration of ultrasound into its first-year anatomy course attended by more than 280 students. Ultrasound workshops were developed to enhance student conceptualization of musculoskeletal (MSK) anatomy through visualizing clinically important anatomical relationships, a simulated lumbar puncture during the back unit, carpal tunnel and shoulder evaluations during the upper limb unit, and plantar fascia, calcaneal tendon, and tarsal tunnel evaluations during the lower limb unit. A 5-point Likert scale survey evaluated if ultrasound improved students' self-perceived anatomical and clinical comprehension of relevant anatomy, improved students' ability to orient to ultrasound imagery, and prompted further independent investigation of the anatomical area. Ultrasound examination questions were added to the anatomy examinations. Two-tailed one-sample t-tests for the back, upper limb, and lower limb units were found to be significant across all Likert survey categories (P < 0.001). Positive student responses to the Likert survey in conjunction with examination question average of 84.3% (±10.3) demonstrated that the ultrasound workshops are beneficial to student education. Ultrasound enhances medical students' clinical and anatomical comprehension and ability to orient to ultrasound imagery for MSK anatomy. This study supports early ultrasound education as a mechanism to encourage students' independent learning as evidenced by many undertaking voluntary investigation of clinical concerns associated with MSK anatomy. This study establishes the successful integration of MSK ultrasound into a large medical school program and its benefit to student clinical education.  相似文献   

14.
Multimedia and simulation programs are increasingly being used for anatomy instruction, yet it remains unclear how learning with these technologies compares with learning with actual human cadavers. Using a multilevel, quasi‐experimental‐control design, this study compared the effects of “Anatomy and Physiology Revealed” (APR) multimedia learning system with a traditional undergraduate human cadaver laboratory. APR is a model‐based multimedia simulation tool that uses high‐resolution pictures to construct a prosected cadaver. APR also provides animations showing the function of specific anatomical structures. Results showed that the human cadaver laboratory offered a significant advantage over the multimedia simulation program on cadaver‐based measures of identification and explanatory knowledge. These findings reinforce concerns that incorporating multimedia simulation into anatomy instruction requires careful alignment between learning tasks and performance measures. Findings also imply that additional pedagogical strategies are needed to support transfer from simulated to real‐world application of anatomical knowledge. Anat Sci Educ 7: 331–339. © 2014 American Association of Anatomists.  相似文献   

15.
16.
Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three‐dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73–80. © 2017 American Association of Anatomists.  相似文献   

17.
The perceptual and cognitive processing demands involved in comprehending complex animations can pose considerable challenges to learners. There is a tendency for learners to extract information that is highly perceptually salient but neglect less conspicuous information of crucial relevance to the building of a quality mental model. This study investigated the effectiveness of self-generated drawing for learning from an animation illustrating a scientific phenomenon, the so-called “Newton’s Cradle.” Participants were 199 students in grade seven, randomly assigned to three experimental conditions: self-generated drawing, traced/copied drawing, and no drawing. All participants were asked to produce an explanation of the animation for both immediate and delayed posttests. The results revealed the superiority of self-generated drawing in supporting animation comprehension at both testing times compared to the other two conditions, which did not differ from each other. In addition, comprehension of the animation was related to the quality of self-generated drawings. Specifically, the depiction of information characterized by low perceptual salience but high conceptual relevance to the phenomenon predicted comprehension and retention over time.  相似文献   

18.
Monoscopically projected three-dimensional (3D) visualization technology may have significant disadvantages for students with lower visual-spatial abilities despite its overall effectiveness in teaching anatomy. Previous research suggests that stereopsis may facilitate a better comprehension of anatomical knowledge. This study evaluated the educational effectiveness of stereoscopic augmented reality (AR) visualization and the modifying effect of visual-spatial abilities on learning. In a double-center randomized controlled trial, first- and second-year (bio)medical undergraduates studied lower limb anatomy with stereoscopic 3D AR model (n = 20), monoscopic 3D desktop model (n = 20), or two-dimensional (2D) anatomical atlas (n = 18). Visual-spatial abilities were tested with Mental Rotation Test (MRT), Paper Folding Test (PFT), and Mechanical Reasoning (MR) Test. Anatomical knowledge was assessed by the validated 30-item paper posttest. The overall posttest scores in the stereoscopic 3D AR group (47.8%) were similar to those in the monoscopic 3D desktop group (38.5%; P = 0.240) and the 2D anatomical atlas group (50.9%; P = 1.00). When stratified by visual-spatial abilities test scores, students with lower MRT scores achieved higher posttest scores in the stereoscopic 3D AR group (49.2%) as compared to the monoscopic 3D desktop group (33.4%; P = 0.015) and similar to the scores in the 2D group (46.4%; P = 0.99). Participants with higher MRT scores performed equally well in all conditions. It is instrumental to consider an aptitude–treatment interaction caused by visual-spatial abilities when designing research into 3D learning. Further research is needed to identify contributing features and the most effective way of introducing this technology into current educational programs.  相似文献   

19.
To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating in‐class preparation provided the opportunity to end each period with integrative group activities that connected laboratory and lecture material and explored clinical correlations. Materials provided for prelaboratory preparation included: custom‐made, three‐dimensional (3D) anatomy videos, abbreviated dissection instructions, key atlas figures, and dissection videos. Data from three years of the course (n = 241 students) allowed for analysis of students' preferences for these materials and detailed tracking of usage of 3D anatomy videos. Students reported spending an average of 27:22 (±17:56) minutes preparing for laboratory, similar to the 30 minutes previously allocated for in‐class dissection preparation. The 3D anatomy videos and key atlas figures were rated the most helpful resources. Scores on laboratory examinations were compared for the three years before the curriculum change (2011–2013; n = 242) and three years after (2014–2016; n = 241). There was no change in average grades on the first and second laboratory examinations. However, on the final semi‐cumulative laboratory examination, scores were significantly higher in the post‐flip classes (P = 0.04). These results demonstrate an effective model for applying flipped classroom pedagogy to the gross anatomy laboratory and illustrate a meaningful role for 3D anatomy visualizations in a dissection‐based course. Anat Sci Educ 11: 385–396. © 2017 American Association of Anatomists.  相似文献   

20.
Dental anatomy is an integrated, core fundamental dental course, which prepares students for all future clinical dental courses. This study aimed to build up an online dental learning platform of micro-computed tomography-based three-dimensional (3D) tooth models with pulp cavity, and to further evaluate its effectiveness for dental anatomy education using a cohort study. First, ninety-six extracted permanent teeth were scanned by micro-computed tomography and the enamel, dentine, and pulp cavity of each was distinguished by different grey-scale intensities using Mimics software. Three-dimensional images allowed further discrimination and insights into permanent three-rooted premolars, central tip, and dental diseases including deep caries and wedge-shaped defects. Furthermore, a second mesiobuccal canal (MB2) in maxillary permanent molar teeth and Vertucci type III root canal configuration in mandibular anterior teeth could be detected using the 3D analytical tool. A digitized 3D tooth model learning platform was implemented. Last, two groups of dental students were assessed to evaluate the effect of 3D models on dental anatomy education. Participants in the Digital group were allowed to use the online dental learning platform freely after class, while the participants in the Traditional group were not. Assessment quizzes showed that participants' scores improved in the Digital group with the use of the learning platform compared with scores in the Traditional group. A questionnaire survey indicated that the participants had a positive attitude toward the 3D models. Thus, adding digital 3D resources to a traditional curriculum may have a positive effect on academic achievements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号