首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peer‐assisted learning as de rigueur is reverberating in medical institutions around the world. Anatomy classroom activities are challenging and different, and the stressful environment of dissection rooms poses a greater challenge than what can be addressed through peer‐assisted learning. It is here that “near‐peer role modeling” is not only likely to be more useful, both to the students as well as their near‐peer teachers, but also holds the answer to the worsening faculty shortage in anatomy education. Anat Sci Educ 3:50–51, 2010. © 2010 American Association of Anatomists.  相似文献   

2.
Teaching is an increasingly recognized responsibility of the resident physician. Residents, however, often assume teaching responsibilities without adequate preparation. Consequently, many medical schools have implemented student‐as‐teacher (SAT) programs that provide near‐peer teaching opportunities to senior medical students. Near‐peer teaching is widely regarded as an effective teaching modality; however, whether near‐peer teaching experiences in medical school prepare students for the teaching demands of residency is less understood. We explored whether the anatomy‐based SAT program through the Human Structure didactic block at Mayo Medical School addressed the core teaching competencies of a medical educator and prepared its participants for further teaching roles in their medical careers. A web‐based survey was sent to all teaching assistants in the anatomy‐based SAT program over the past five years (2007–2011). Survey questions were constructed based on previously published competencies in seven teaching domains – course development, course organization, teaching execution, student coaching, student assessment, teacher evaluation, and scholarship. Results of the survey indicate that participants in the anatomy‐based SAT program achieved core competencies of a medical educator and felt prepared for the teaching demands of residency. Anat Sci Educ 6: 385–392. © 2013 American Association of Anatomists.  相似文献   

3.
Peer teaching has been recognized as a valuable and effective approach for learning and has been incorporated into medical, dental, and healthcare courses using a variety of approaches. The success of peer teaching is thought to be related to the ability of peer tutors and tutees to communicate more effectively, thereby improving the learning environment. Near‐peer teaching involves more experienced students acting as tutors who are ideally placed to pass on their knowledge and experience. The advantage of using near‐peer teachers is the opportunity for the teacher to reinforce and expand their own learning and develop essential teaching skills. This study describes the design and implementation of a program for fourth year medical students to teach anatomy to first‐ and second‐year medical students and evaluates the perceptions of the near‐peer teachers on the usefulness of the program, particularly in relation to their own learning. Feedback from participants suggests that the program fulfills its aims of providing an effective environment for developing deeper learning in anatomy through teaching. Participants recognize that the program also equips them with more advanced teaching skills that will be required as they move nearer toward taking on supervisory and teaching duties. The program has also provided the school with an additional valuable and appropriate resource for teaching anatomy to first‐ and second‐year students, who themselves view the inclusion of near‐peer teachers as a positive element in their learning. Anat Sci Educ 2:227–233, 2009. © 2009 American Association of Anatomists.  相似文献   

4.
Areas of difficulty faced by our veterinary medicine students, with respect to their learning in dissection classes, were identified. These challenges were both general adult‐learning related and specific to the discipline of anatomy. Our aim was to design, implement, and evaluate a modified reciprocal peer‐assisted/team‐based learning format—Doing Dissections Differently (DDD)—to complement existing dissection classes, with the intention of enhancing both student learning and the student learning experience. Second year veterinary medicine students (n = 193), in their usual dissection groups, were randomly assigned to one of four roles: anatomist, clinician, radiologist, and learning resources manager. Students attended a preparatory workshop outlining the skills required for effective execution of their role. They were then asked to perform their roles throughout five consecutive musculoskeletal dissection classes. Student attitudes to dissection classes before and after DDD were evaluated by questionnaire (146 respondents). There was a significant (P = 0.0001) improvement after DDD in a number of areas: increased perceived value of dissection classes as an anatomy learning aid; improved appreciation of the clinical relevance of anatomy; increased use of resources before and during dissection classes; and longer preparation time for dissection classes. Before DDD, 45% of students felt that at least one peer did not contribute usefully to the group during dissection classes; no improvement was seen in this measure after DDD. Although the new format highlighted a potential need to improve teamwork, most students actively engaged with DDD, with dissection classes valued more highly and utilized more effectively. © 2012 American Association of Anatomists.  相似文献   

5.
Despite advances to move anatomy education away from its didactic history, there is a continued need for students to contextualize their studies to make learning more meaningful. This article investigates authentic learning in the context of an inquiry‐based approach to learning human gross anatomy. Utilizing a case‐study design with three groups of students (n = 18) and their facilitators (n = 3), methods of classroom observations, interviews, and artifact collection were utilized to investigate students' experiences of learning through an inquiry project. Qualitative data analysis through open and selective coding produced common meaningful themes of group and student experiences. Overall results demonstrate how the project served as a unique learning experience where learners engaged in the opportunity to make sense of anatomy in context of their interests and wider interdisciplinary considerations through collaborative, group‐based investigation. Results were further considered in context of theoretical frameworks of inquiry‐based and authentic learning. Results from this study demonstrate how students can engage anatomical understandings to inquire and apply disciplinary considerations to their personal lives and the world around them. Anat Sci Educ 10: 538–548. © 2017 American Association of Anatomists.  相似文献   

6.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

7.
8.
Despite nearly 200 accredited entry‐level physical therapist education programs in the United States that culminate in a doctoral degree, only a paucity of reports have been published regarding the efficacy of peer teaching in gross anatomy. No one has described the usefulness of peer teaching from the viewpoint of the peer teacher. An organized peer teaching method provided by four second‐year doctors of physical therapy (DPT) students in a semester course in gross anatomy had a positive impact on the academic performance in gross anatomy of first‐year DPT students. The unique feature of the weekly peer teaching sessions was a packet assembled by the second‐year peer teachers, which contained diagrams, fill‐in‐the blank questions, and helpful mnemonic devices. This study surveyed perceptions of first‐year DPT students in response to a peer teaching method, using a structured 10‐item questionnaire and a five‐point Likert scale. Second‐year DPT peer teachers provided written reflections about the benefits and challenges of serving as a peer teacher. Results revealed that 13 planned peer‐teaching experiences provided by four second‐year DPT students were valuable and promoted a firm understanding of anatomical relationships important for the clinical competence of physical therapist students. Moreover, peer teachers acknowledged acquiring clinically desirable teaching, academic, organizational, and time management skills from the experience. As a result, physical therapist educators may wish to consider this model of peer teaching to augment their teaching strategies for a class in gross human anatomy. Anat Sci Ed 1:199–206, 2008. © 2008 American Association of Anatomists.  相似文献   

9.
Peer‐assisted learning has gained momentum in a variety of disciplines, including medical education. In Gothenburg, Sweden, medical students who have finished their compulsory anatomy courses have the option of working as teaching assistants (TAs). Teaching assistants provide small group teaching sessions as a complement to lectures given by faculty. Previously, TAs were left to handle the role as junior teachers by themselves, but since 2011, a continuation course in anatomy has been developed with the aim of providing the TAs better anatomy knowledge and guidance for teaching. The course was designed to comprise 7.5 ECTS credits (equivalent to 5 weeks of full‐time studies), and today all TAs are required to take this course before undertaking their own teaching responsibilities. This study aims to compare course evaluations of TA teaching before and after the introduction of the anatomy continuation course, in order to understand how students perceived teaching performed by self‐learned versus trained TAs. The results of this study demonstrate that there was a trend towards better teaching performed by trained TAs. The variability in rankings decreased significantly after the introduction of the continuation course. This was mainly due to an improvement among the TAs with the lowest levels of performance. In addition to comparing student rankings, TAs were interviewed regarding their experiences and perceptions within the continuation course. The course was generally positively regarded. The TAs described a sense of cohesion and appreciation since the institute invested in a course dedicated specifically for them. Anat Sci Educ 11: 403–409. © 2018 American Association of Anatomists.  相似文献   

10.
Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self‐directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self‐directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Anat Sci Educ 6: 114–124. © 2012 American Association of Anatomists.  相似文献   

11.
Previous research has explored the experiences of medical students using body painting as a learning tool. However, to date, faculty experiences and views have not been explored. This international qualitative study utilized a grounded theory approach with data collection through interviews with academics and clinicians who utilized body painting as part of their anatomical teaching. Twenty‐six anatomists participated in the study from 14 centers worldwide. Three themes emerged from the data: (1) the efficacy of body painting, (2) the promotion of knowledge retention and recall, (3) considerations and practicalities regarding the use of body painting as a teaching tool. Subthemes show that body painting is used as an adjunct to the curriculum for teaching surface anatomy and peer examination. Benefits included diffusing the formal curricula, high student engagement and learning for future clinical practice. Body painting was advocated for promoting knowledge retention and recall, particularly learning through the process of cognitive load due to combining the use of color and kinesthetic learning with anatomical theory. Critical discussions surfaced on the topic of undressing in the classroom due to cultural and personal considerations possibly leading to unequal involvement and different learning experiences. Overall results support previous research showing that anatomists appreciate body painting as an effective, enjoyable, engaging and cost efficient adjunct to the multimodal anatomy curriculum. The role of cognitive load theory in learning anatomy through body painting emerged from the data as a possible theoretical framework supporting learning benefits from body painting and is suggested for further investigation. Anat Sci Educ 11: 146–154. © 2017 American Association of Anatomists.  相似文献   

12.
Video and photography are often used for delivering content within the anatomical sciences. However, instructors typically produce these resources to provide instructional or procedural information. Although the benefits of learner‐generated content have been explored within educational research, virtually no studies have investigated the use of learner‐generated video and photograph content within anatomy dissection laboratories. This study outlines an activity involving learner‐generated video diaries and learner‐generated photograph assignments produced during anatomy laboratory sessions. The learner‐generated photographs and videos provided instructors with a means of formative assessment and allowed instructors to identify evidence of collaborative behavior in the laboratory. Student questionnaires (n = 21) and interviews (n = 5), as well as in‐class observations, were conducted to examine student perspectives on the laboratory activities. The quantitative and qualitative data were examined using the framework of activity theory to identify contradictions between student expectations of, and engagement with, the activity and the actual experiences of the students. Results indicate that learner‐generated photograph and video content can act as a rich source of data on student learning processes and can be used for formative assessment, for observing collaborative behavior, and as a starting point for class discussions. This study stresses the idea that technology choice for activities must align with instructional goals. This research also highlights the utility of activity theory as a framework for assessing classroom and laboratory activities, demonstrating that this approach can guide the development of laboratory activities. Anat Sci Educ 7: 361–369. © 2014 American Association of Anatomists.  相似文献   

13.
Co‐operative learning is underused as a teaching and learning strategy in higher education and yet is ideal for courses that require students to learn skills that require manual dexterity, knowledge and clinical reasoning – key elements of professional and clinical competence. Reciprocal peer coaching (RPC) is a form of co‐operative or peer‐assisted learning that encourages individual students in small groups to coach each other in turn so that the outcome of the process is a more rounded understanding and a more skilful execution of the task in hand than if the student was learning in isolation. Used as a formative assessment strategy, RPC has the capacity to increase motivation in students due to the nature of the shared interdependent goal, and to provide immediate feedback to students on completion of the assessment. The purpose of this research was to interview a group of first‐year students to elicit their perceptions of the RPC process. The data were analysed from a phenomenological perspective and revealed three themes: motivating learning, learning in groups and the context of learning. The findings were subsequently explored in relation to the concept of self‐regulation of learning and the benefits which RPC as a formative assessment strategy has in promoting students’ self‐regulation.  相似文献   

14.
Many pre‐health professional programs require completion of an undergraduate anatomy course with a laboratory component, yet grades in these courses are often low. Many students perceive anatomy as a more challenging subject than other coursework, and the resulting anxiety surrounding this perception may be a significant contributor to poor performance. Well‐planned and deliberate guidance from instructors, as well as thoughtful course design, may be necessary to assist students in finding the best approach to studying for anatomy. This article assesses which study habits are associated with course success and whether course design influences study habits. Surveys (n = 1,274) were administered to students enrolled in three undergraduate human anatomy laboratory courses with varying levels of cooperative learning and structured guidance. The surveys collected information on potential predictors of performance, including student demographics, educational background, self‐assessment ability, and study methods (e.g., flashcards, textbooks, diagrams). Compared to low performers, high performers perceive studying in laboratory, asking the instructor questions, quizzing alone, and quizzing others as more effective for learning. Additionally, students co‐enrolled in a flipped, active lecture anatomy course achieve higher grades and find active learning activities (e.g., quizzing alone and in groups) more helpful for their learning in the laboratory. These results strengthen previous research suggesting that student performance is more greatly enhanced by an active classroom environment that practices successful study strategies rather than one that simply encourages students to employ such strategies inside and outside the classroom. Anat Sci Educ 11: 496–509. © 2018 American Association of Anatomists.  相似文献   

15.
Students enrolled in the Optometry program at the University of Manchester are required to take a functional anatomy course during the first year of their studies. Low mean scores in the written examination of this unit for the past two academic years energized staff to rethink the teaching format. Interactive sessions lasting 20 minutes each were introduced during the two hour lecture sessions. In these sessions students reinforced their anatomical knowledge learned in lectures, through playing games such as anatomy bingo and solving anatomical anagrams. In addition, five e‐learning modules were also introduced for students to complete in their own time. A pre‐ and postcourse questionnaire were distributed to obtain student views on their expectations of the course and interactive sessions. Comparisons were made between written examination results from 2008 to 2009 to written examination results from the previous five academic years to see if the interactive sessions and e‐learning modules had any impact on student knowledge. In addition, comparisons were made between student performances on the functional anatomy course with their performance in all of the other assessments taken by the students during their first year of study. Analysis of the questionnaires showed that student's expectations of the course were fulfilled and the interactive sessions were well received by the majority. There was a significant increase (P ≤ 0.01) in the mean examination score in 2008–2009 after introduction of the interactive sessions and e‐learning modules compared with scores in previous years. The introduction of interactive sessions has increased student enjoyment of the module and along with the e‐learning modules have had a positive impact on student examination results. Anat Sci Educ 3:39–45, 2010. © 2009 American Association of Anatomists.  相似文献   

16.
Reciprocal peer teaching (RPT), wherein students alternate roles as teacher and learner, has been applied in several educational arenas with varying success. Here, we describe the implementation of a reciprocal peer teaching protocol in a human gross anatomy laboratory curriculum. We compared the outcomes of the RPT class with those of previous classes in which RPT was not employed. Objective data (i.e., course grades) show no significant differences in gross anatomy laboratory grades between students in the RPT and non‐RPT classes. To subjectively evaluate the relative success of RPT in the laboratory, we analyzed student opinions obtained through anonymous surveys. These data show that a powerful majority of student respondents felt that RPT was beneficial and should be used in future classes. The greatest disadvantage was unreliable quality of teaching from peers; however, most students still felt that RPT should be continued. Students who felt that they had insufficient hands‐on experience (by virtue of dissecting only half the time) were significantly more likely to recommend abandoning RPT. These results underscore the importance of active student dissection, and suggest that a modified version of the described RPT protocol may satisfy more of the needs of large, diverse student populations. Several hidden benefits of RPT exist for faculty, administration, and students, including reduced need for large numbers of cadavers, attendant reduction in operating costs, and smaller student‐to‐teacher ratios. Anat Sci Educ 2:143–149, 2009. © 2009 American Association of Anatomists.  相似文献   

17.
Web‐based computer‐aided instruction (CAI) has become increasingly important to medical curricula. This multi‐year study investigated the effectiveness of CAI and the factors affecting level of individual use. Three CAI were tested that differed in specificity of applicability to the curriculum and in the level of student interaction with the CAI. Student personality preferences and learning styles were measured using the Meyers Briggs Type Indicator (MBTI) and Kolb's Learning Style Inventory (LSI). Information on “computer literacy” and use of CAI was collected from student surveys. Server logs were used to quantify individual use of respective CAI. There was considerable variability in the level of utilization of each CAI by individual students. Individual use of each CAI differed and was associated with gender, MBTI preferences and learning style, but not with “computer literacy.” The majority of students found the CAI useful for learning and used the CAI by themselves. Students who accessed the CAI resources most frequently scored significantly higher on exams compared with students who never accessed the resources. Our results show that medical students do not uniformly use CAI developed for their curriculum and this variability is associated with various attributes of individual students. Our data also provide evidence of the importance of understanding student preferences and learning styles when implementing CAI into the curriculum. Anat Sci Ed 2:2–8, 2009. © 2009 American Association of Anatomists.  相似文献   

18.
Anatomy students studying dissected anatomical specimens were subjected to either a loosely‐guided, self‐directed learning environment or a strictly‐guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly‐guided gross anatomy laboratory sessions lead to higher learning gains than loosely‐guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second‐year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station‐based laboratory sessions; the other half, the control group, to loosely‐guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly‐guided group scored higher than the loosely‐guided group at all time‐points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between‐subject effect (P ≤ 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly‐guided group than for the loosely‐guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

19.
Active learning approaches have shown to improve student learning outcomes and improve the experience of students in the classroom. This article compares a Process Oriented Guided Inquiry Learning style approach to a more traditional teaching method in an undergraduate research methods course. Moving from a more traditional learning environment to a student-centered approach proved an enjoyable experience for the students and the instructor as well. The learning method forces students into an active role in the classroom and allows the instructor to be the facilitator of the learning experience. Students are able to explore course content and gain valuable group skills in the process.  相似文献   

20.
A stand‐alone online teaching module was developed to cover an area of musculoskeletal anatomy (structure of bone) found to be difficult by students. The material presented in the module was not formally presented in any other way, thus providing additional time for other curriculum components, but it was assessed in the final examination. The module was developed using “in‐house” software designed for academics with minimal computer experience. The efficacy and effectiveness of the module was gauged via student surveys, testing student knowledge before and after module introduction, and analysis of final examination results. At least 74% of the class used the module and student responses were positive regarding module usability (navigation, interaction) and utility (learning support). Learning effectiveness was demonstrated by large significant improvements in the post‐presentation test scores for “users” compared with “non‐users” and by the percentage of correct responses to relevant multiple choice questions in the final examination. Performance on relevant short answer questions in the final examination was, on average, comparable to that for other components. Though limited by study structure, it was concluded that the module produced learning outcomes equivalent to those generated by more traditional teaching methods. This “Do‐It‐Yourself” e‐learning approach may be particularly useful for meeting specific course needs not catered for by commercial applications or where there are cost limitations for generation of online learning material. The specific approaches used in the study can assist in development of effective online resources in anatomy. Anat Sci Educ 6: 107–113. © 2012 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号