首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高中数学复习中的恒成立问题成为历年高考的一个热点。恒成立问题解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。一、一次函数型(略)二、二次函数型若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0驻<,若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。例1、设f(x)=x2-2ax+2,当x∈[-1,+∞]时,都有f(x)≥a恒成立,求a的取值范围。分析:题目中要证明f(x)≥a恒成立,若把a移到等号的左边,则把原题转化成左边二次函数…  相似文献   

2.
抽象函数是指满足某些条件但没有给出解析式的函数.一般说来,这类函数大多是根据教材中某些函数的性质与结构特征,经过抽象、概括而成的,因而大都能找到其原始模型.解题时,我们可以根据抽象函数提供的信息,经过加工整合,找到相应的模型函数,并由此推测出抽象函数可能具有的性质,这样易于明确解题方向,而使问题获解.1 直线型例1 定义域为 R 的函数 f(x)满足:对于任意实数 x,y 都有 f(x y)=f(x) f(y)成立,且当 x>0时,f(x)<0恒成立,解关于 x  相似文献   

3.
在数学解题中经常碰到有关恒成立问题 ,解决这类问题的方法尽管很多 ,但都离不开一些基本的数学思想 ,如化归思想、函数思想、方程思想等等 .笔者在平时的教学过程中对这类问题的解法作了一点归纳 ,供大家参考 .一、利用一次函数的性质对于一次函数 f(x) =kx +b,x∈ [m ,n] ,有f(x) >0恒成立 f(m) >0 ,f(n) >0 ;f(x) <0恒成立 f(m) <0 ,f(n) <0 .例 1  |p| <2 ,p∈R ,欲使不等式(log2 x) 2 +(p-2 )log2 x+1-p >0恒成立 ,求x的取值范围 .分析 若直接解关于log2 x的不等式 ,再由 p的取值范围求出x的取值范围 ,不仅化简过程十分繁杂 ,而…  相似文献   

4.
求不等式恒成立的参数的取值范围,是中学教学的难点之一,也是高考、数学竞赛的热点.下面就此问题的几种基本解法加以论述. 一、利用一次函数的性质 一次函数y=f(x)=ax+b在x∈[m,n]上恒大于零的充要条件是:{a>0,f(m)>0 或{a<0,f(n)>0或{f(m)>0,f(n)>0.(对于y=f(x) =ax+b恒小于零的条件亦可类似给出) 例1 若f(x)=(x-1)m2-6xm+x+1在区间[0,1]上恒为正值,求实数m的取值范围.  相似文献   

5.
给定区间上函数恒成立问题的基本题型是:当m∈M时,F(m,n)>0(或<0或=0)恒成立,求n的取值范围.1利用一次函数的性质一次函数f(x)=ax+b(a≠0),根据一次函数性质,在[m,n]内恒有f(x)>0,等价于f(m)>0且f(n)>0;在[m,n]内恒有f(x)<0,等价于f(m)<0且f(n)<0.例1已知a∈[0,1]时,(a?1)log32x?6a log3x+a+1恒为正数,求实数x的取值范围.分析令2h(a)=(a?1)log3x?6a log3x+a+122=(log3x?6log3x+1)a?log3x+1.当a∈[0,1]时,h(a)>0恒成立,即233(0)0,log10,(1)0,6log20,h xh x???>>???????++>>∴?1相似文献   

6.
数学中的恒成立问题涉及到一次函数、二次函数的性质,渗透着不等式的解法,还贯穿了换元法、数形结合、函数与方程等思想,有利于培养学生学生的综合能力,也是高考的一个热点.下面谈一谈恒成立问题的求解策略.首先,对于恒成立问题,有以下结论:如果函数y=f(x)在定义域D上存在最大值f(x)max(或最小值f(x)min),则g(a)≥f(x)(或g(a)≤f(x))恒成立g(a)≥f(x)max(或g(a)≤f(x)min).可以看出,求解恒成立问题可以转化为求函数的最值问题.根据具体问题,可采用以下方法:一、主元素法这种方法就是改变自变量与参数的位置,当变化的量较多时,选择其中一个…  相似文献   

7.
一、变换主元法给定一次函数y=f(x)=ax b(a≠0),若y= f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于  相似文献   

8.
构造函数解题需要较强的创新意识,是高考改革的方向,本文愿就此抛砖引玉.一、构造一次函数y=kx+b(k≠0) 例1 设a,b,c∈(-1,1),求证:ab+bc+ca>-1. 解析作辅助函数f(x)=(b+c)x+bc+1.因为f(1)=(b+1)(c+1)>0,f(-1)=(1-b)(1-c)>0,所以在(-1,1)上恒有f(x)>0.又-10,即原不等式成立.例2 设不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m恒成立,求x  相似文献   

9.
导数是新教材第三册(选修Ⅱ)中的新添内容之一,教材主要介绍了导数在解题中判断函数单调及求函数极值与最值的应用,本文结合具体实例,就导数在解题中其它方面的几点应用作一下归纳,仅供读者参考.1判断函数图象例1设函数y=f(x)在定义域内可导,其图象如右图所示,则其导函数y=f′(x)的图象为()分析由y=f(x)的图象可以看出,当x<0时,y=f(x)是单调递增函数,由此可得:对任意x<0,f′(x)>0恒成立;所以可以排除(A)、(C);又因为x>0时,y=f(x)有两个极值点,所以x>0时,f′(x)=0有两个不等实根,且在两根左右两侧,f′(x)符号相反,因此答案应选(D).2化简例2…  相似文献   

10.
高中数学教学中,常遇到恒成立问题,在解决这类问题时,学生经常将恒成立与所有数成立、成立等问题相混淆,忽视恒成立的条件,误用等价转化,从而出现各种各样的问题.将“恒成立”与“所有数成立”等同函数y=f(x)恒为正,即要求y为正数,而并非为所有正数;函数y=f(x)为所有正数,要求y取遍所有正数.将两者混淆,易导致错误.例1:若函数y=loga(x2+mx-m)(a>0且a≠1)的值域为R,求实数m的取值范围.误解:要使y=loga(x2+mx-m()a>0且a≠1)的值域为R,只要使u=x2+mx-m恒为正即可.∴△=m2+4m<0#-4相似文献   

11.
求解恒成立问题时,可构造我们熟悉的函数类型,然后根据函数的性质解题·求解时经常要应用变量分离的方法,应用这一方法的关键是分清参数与变量·一、构造一次函数型y=ax+b例1若不等式2x-1>m(x2-1),对满足|m|≤2的所有m都成立,求x的取值范围·解:视m为主元,构造一次型函数g(m)=(x2-1)m-(2x-1),原题即对满足|m|≤2的m,g(m)<0恒成立·由函数图象是一条线段,知应g(-2)<0,g(2)<0,即-2(x2-1)-(2x-1)<0,2(x2-1)-(2x-1)<0·解得-12+7相似文献   

12.
在解答基本函数的有关问题时,若忽视或混淆条件充分性、必要性或充要性,进行非等价转化,或者由于概念、性质、定理不清、运算方法不当等,就会造成“对而不全”的解题失误甚至错误.1忽视对定义域的等价转化致错例1已知函数f(x)=loga(-x2+log2ax)的定义域为(0,21),则实数a的取值范围是.图错解函数f(x)=loga(-x2+log2ax)的定义域为(0,21),即当x∈(0,21)时,-x2+log2ax>0恒成立,即关于x的不等式log2ax>x2在(0,21)上恒成立,令y1=log2ax,y2=x2,如图,y2过点P(21,41),y1>y2在(0,21)上恒成立,则应有y1、y2在(0,12)上的图象的位置关系为y1在y2上方,所…  相似文献   

13.
函数零点及不等式恒成立问题是常见的问题之一.f (x) g(x)> 0或f (x) g(x)<0恒成立,即两个函数积的不等式恒成立问题可用两个函数零点相等性质来解决.研究函数零点及不等式恒成立问题的求解方法能提高学生的解题能力.  相似文献   

14.
于真灵 《高中生》2010,(33):22-23
一、深挖细查,突破解题的瓶颈例1已知函数y=f(x)有反函数,定义:若对给定的实数a(a≠0),函数y=f(x+a)与y=f-1(x+a)互为反函数,则称y=f(x)满足"a和性质"  相似文献   

15.
近年来,在一些省市高考试题中开始重视不动点的考察,通常以不动点为载体,与函数、数列、不等式、解析几何等知识进行综合,这类问题情境新颖,独到,而教材上又未过多涉及.本文试图探索不动点问题的解题途径、规律和策略.权当对教材的补充.1函数不动点的定义定义:对于函数f(x),若存在实数x0,满足f(x0)=x0,则称x0为f(x)的不动点.对此定义有两方面的理解:(1)代数意义:若方程f(x)=x有实数根x0,则y=f(x)有不动点x0;(2)几何意义:若函数y=f(x)与y=x有交点(x0,y0),则x0为y=f(x)的不动点.在实际问题中经常根据f(x)=x根情况进行讨论,同时结合图形来求解…  相似文献   

16.
张春林 《高中生》2013,(27):24-25
一、几种常见的抽象函数1.一次函数型抽象函数:f(x+y)=f(x)+f(y),f(x-y)=f(x)-f(y).对应函数模型:f(x)=kx(k≠0).2.二次函数型抽象函数:f(a+x)=f(a-x).对应函数模型:f(x)=k(x-a)2+m(k≠0).3.指数函数型抽象函数  相似文献   

17.
一次函数f(x)在给定区间[m,n]上,有以下重要性质:(1)f(m)>0且f(n)>0f(x)>0在[m,n]上恒成立;(2)f(m)<0且f(n)<0f(x)<0在[m,n]上恒成立;(3)f(m)f(n)>0f(m)在[m,n]上恒正或恒负;f(m)f(n)<0f(x)在[m,n]上有正有负.以上性质成立的理由很简单,因为一次函数在任何闭区间上的图象都是一  相似文献   

18.
函数与不等式关系密切,尤其是含参数的不等式问题,变量较多.处理这类问题,对思维能力的要求很高,稍不注意,便会引起思维混乱导致半途而废,得不出结果.遇到这类问题时,我们应如何处理呢? 例 1 如果 2x-1>m(x2-1)对任m∈[-2,2]都成立,求x的范围. 分析:解题时易想到,由原不等式解出x,再根据m的范围确定x的范围.可以想象,此法解题过程非常烦琐,很难解出结果.应如何考虑呢?注意到m的范围己确定,转换一下角度,把所给不等式看成m的不等式如何?原不等式变形为m(x2-1)-(2x-1)<0,左边显然是m的一次函数.记作f(m),由题意,f(m)<0对任m∈[-2,-]恒成立,由一次函数性质只需f(-2)<0 f(2)<0即可,这样便可解这个关于x的不等式  相似文献   

19.
<正>如果函数y=f(x)在x=a处的函数值等于零,即f(a)=0,则称a为函数y=f(x)的零点,因此函数y=f(x)的零点就是方程f(x)=0的根。函数的零点把函数和方程紧密地联系在一起。函数的零点是函数的一个重要性质,在分析解题思路、探究解题方法中发挥着重要作用。一、利用函数零点研究方程的根由于函数y=f(x)的零点就是方程f(x)=0的根,所以在研究方程的有关问题(比较方程根的大小、确定方程根的分布、证明根的存在性等)时,都可以将方程问题转化  相似文献   

20.
一次函数是初中数学的重要内容之一,而求一次函数解析式问题涉及的知识较多,难度较大,同学们在学习时经常遇到困难.下面结合例题介绍求一次函数解析式问题的类型及其解题方法,供同学们参考.一、利用函数性质例1将直线y=-3x平移得到直线y=kx+b,所得的直线与直线y=x+5相交,交点在y轴上,求直线y=kx+b的解析式.分析:根据一次函数的性质,可知平移后所得的直线与原直线平行,与y轴交点的坐标为(0,b).解:因为将直线y=-3x平移得到直线  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号