首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

Many science curricula and standards emphasise that students should learn both scientific knowledge and the skills associated with the construction of this knowledge. One way to achieve this goal is to use inquiry-learning activities that embed the use of science process skills. We investigated the influence of scientific reasoning skills (i.e. conceptual and procedural knowledge of the control-of-variables strategy) on students’ conceptual learning gains in physics during an inquiry-learning activity. Eighth graders (n?=?189) answered research questions about variables that influence the force of electromagnets and the brightness of light bulbs by designing, running, and interpreting experiments. We measured knowledge of electricity and electromagnets, scientific reasoning skills, and cognitive skills (analogical reasoning and reading ability). Using structural equation modelling we found no direct effects of cognitive skills on students’ content knowledge learning gains; however, there were direct effects of scientific reasoning skills on content knowledge learning gains. Our results show that cognitive skills are not sufficient; students require specific scientific reasoning skills to learn science content from inquiry activities. Furthermore, our findings illustrate that what students learn during guided inquiry activities becomes visible when we examine both the skills used during inquiry learning and the process of knowledge construction. The implications of these findings for science teaching and research are discussed.  相似文献   

2.
ABSTRACT

In this article, 61 high-school students learned about ocean acidification through a virtual laboratory followed by a virtual lecture and an asynchronous discussion with a marine scientist on an online platform: VoiceThread. This study focuses on the students’ development of ocean literacy when prompted to ask questions to the scientist. The students’ questions were thematically analysed to assess (1) the kind of reasoning that can be discerned as premises of the students’ questions and (2) what possibilities for enhancing ocean literacy emerge in this instructional activity. The results show how interacting with a scientist gives the students an entry point to the world of natural sciences with its complexity, uncertainty and choices that go beyond the idealised form in which natural sciences often are presented in school. This activity offers an affordable way of bringing marine science to school by providing extensive expertise from a marine scientist. Students get a chance to mobilise their pre-existing knowledge in the field of marine science. The holistic expertise of the marine scientist allows students to explore and reason around a very wide range of ideas and aspect of natural sciences that goes beyond the range offered by the school settings.  相似文献   

3.
4.
Conclusions Beginning student teachers have already acquired very definite views about teaching science before they begin their teacher training course. These views are generally similar to the views espoused by science educators, but are contrary to the classroom practices of many teachers. Their views seem to have origins in what the students perceive to have been meaningful and enjoyable learning experiences for themselves in their own schooling; and to a lesser extent for children they have observed. Female students who have studied more science at high school tend to favour the use of worksheets in experimental work. Several interesting questions arise from these findings: When these students begin to teach as qualified teachers, will they still espouse the same opinions? If so, does that mean that there is a ‘new wave’ of teachers entering the service who are more committed to hands-on activity work than their older colleagues? If not, what aspects of the teacher training process have caused them to change their opinions? Will these present students be using hands-on strategies themselves after they have been teaching for some time? That is, do system and school constraints effectively prevent teachers from using such strategies? Can secondary science teachers do more to influence positively their students' opinions about teaching science, such as engendering more positive attitudes to science, incorporating more hands-on work, and relying less on printed worksheets in laboratory work? This exploratory work has highlighted the concern expressed by Morrissey (1981) in that there is a great need for long term longitudinal studies of student teachers' attitudes to teaching science, with a particular focus on their teaching behaviours after graduation.  相似文献   

5.
The purpose of this study was to discover if grouping students in the laboratory on the basis of their formal reasoning ability affected (1) their science content achievement, (2) their formal reasoning ability, (3) the learning environment in the laboratory, and (4) the relationships between individuals in a particular group. The laboratory groups for three physical science classes for preservice elementary teachers were arranged as follows: (1) one class with students of unequal reasoning ability grouped together, i.e., one highly developed formal reasoner per group (the heterogeneous group), (2) one class with students of similar reasoning ability grouped together (the homogeneous group), and (3) one class arranged in groups according to the desires of the class members (the student choice group). The three classes were compared using pre-and post-scores on content and formal reasoning instruments and scores for classroom environment and social relationships. Results indicated that the groupings as described had significantly different effects on science content achievement but not on any of the other questions posed above. The students in the class with laboratory teams grouped by student choice had significantly lower science content scores than the students in the classes with teams formed using either the heterogeneous or homogeneous grouping procedures. The difference between the heterogeneously and homogeneously grouped classes was not significant at the 0.05 level.  相似文献   

6.
The preservice training of primary teachers is an opportunity to provide positive experiences which may ameliorate students' anxiety about science and science teaching, and enhance their beliefs that they may become effective science teachers. The previous and current science related experiences, and beliefs, of an intake of primary teachers participating in an introductory science content subject, were explored. Matter and energy concepts were major content components of the subject. Data were collected from pre- and post-test administrations of psychometric tests designed to measure students' science teaching self-efficacy, science related attitudes, interest in science teaching, and preferred learning environment. A randomly selected sample of students was interviewed at the commencement and finish of the subject. One third of the sample was assigned to a study group in which a constructivist approach to laboratorys sessions was adopted. The remainder of the sample experienced a more traditional transmissive format in laboratory sessions. Analysis of the quantitative data revealed no group differences in self-efficacy. Interesting contrasts between students evident in the data from the interviews facilitated the articulation of tentative assertions about the causative factors that may influence the development of students' sense of self-efficacy and possible science related anxiety. Specialisations: science teacher education, conceptual change, scientific reasoning. Specialisations: science teacher education, conceptual change, scientific reasoning.  相似文献   

7.
Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science teachers to become more knowledgeable and reflective about how to teach school students with a range of worldviews and religious beliefs. The aim of this paper is to take that proposition a step further by considering what the aims and content of a session in teacher education might be. The focus is on helping future teachers develop strategies to teach school students to think critically about the nature of science and what it means to have a scientific worldview. The paper draws on data gathered during an interview study with 28 students at five secondary schools in England. The data was analysed to discover students’ perceptions of science and their perceptions of the way that science responds to big questions about being human. The findings are used to inform a set of three strategies that teachers could use to help young people progress in their understanding of the nature of science. These strategies together with the conceptual framework that underpins them are used to develop a perspective on what kinds of pedagogical content knowledge teacher education might usefully provide.  相似文献   

8.
It is problematic whether primary teachers benefit by completing a first degree especially when the teaching of specific subjects, here science, is the focus of attention. This study reports the comparative results of interviewing thirteen Canadian and ten Australian student teachers, both about to commence their Bachelor of Education. The Canadian students had completed an initial degree while nine of the Australian students were school leavers. The interviews, which explored views about teaching primary science, were analysed with this factor in mind. Student teacher perceptions reported include: how to recognise a “good” primary science teacher; perceptions of self as a “good” primary science teacher; expectations of how the teacher education program could assist their science teaching; and whether (for the Canadian students) the initial degree will help in becoming a primary science teacher. Analysis of the interviews suggests possible influences a first degree (among other factors) may have on perceptions related to primary science teaching and raises questions about what is the best general approach for preparing primary teachers to teach science effectivly.  相似文献   

9.
In the current study, we focus on teacher-student discourse in Pre-K science activities, with particular attention to teacher questioning. Videotaped classroom observations and teacher interviews served as the corpus of data. Overall, teachers asked mostly closed-ended questions, but used more open-ended questions when experiments were being conducted. During experiments, teachers?? questions were aimed at prediction and reasoning. In contrast, teachers used primarily closed-ended questions when science skills were being practiced and during science book readings, when their questions were oriented toward recognition and recall of factual information. The effects of the teachers?? questions can be seen in the students?? responses. When questions were open-ended, students employed a more varied vocabulary and more complex sentence structures. When teachers?? questions were oriented toward prediction and reasoning, students practiced these higher level cognitive skills in responding. Based on these findings, we provide recommendations for teaching practice in early childhood science education.  相似文献   

10.
This article is concerned with commonsense science knowledge, the informally gained knowledge of the natural world that students possess prior to formal instruction in a scientific discipline. Although commonsense science has been the focus of substantial study for more than two decades, there are still profound disagreements about its nature and origin, and its role in science learning. What is the reason that it has been so difficult to reach consensus? We believe that the problems run deep; there are difficulties both with how the field has framed questions and the way that it has gone about seeking answers. In order to make progress, we believe it will be helpful to focus on one type of research instrument—the clinical interview—that is employed in the study of commonsense science. More specifically, we argue that we should seek to understand and model, on a moment‐by‐moment basis, student reasoning as it occurs in the interviews employed to study commonsense science. To illustrate and support this claim, we draw on a corpus of interviews with middle school students in which the students were asked questions pertaining to the seasons and climate phenomena. Our analysis of this corpus is based on what we call the mode‐node framework. In this framework, student reasoning is seen as drawing on a set of knowledge elements we call nodes, and this set produces temporary explanatory structures we call dynamic mental constructs. Furthermore, the analysis of our corpus seeks to highlight certain patterns of student reasoning that occur during interviews, patterns in what we call conceptual dynamics. These include patterns in which students can be seen to search through available knowledge (nodes), in which they assemble nodes into an explanation, and in which they converge on and shift among alternative explanations. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 49: 166–198, 2012  相似文献   

11.
《学习科学杂志》2013,22(2):131-166
As part of a project to identify opportunities for reasoning that occur in good but typical science classrooms, this study focuses on how sixth graders reason about the goals and strategies of experimentation and laboratory activities in school. Collaborating with teachers, we explore whether reasoning can be deepened by developing instruction that capitalizes more effectively on the classroom opportunities that arise for fostering complex thinking and understanding. The design of the study includes (a) a baseline interview probing students' understanding of experimentation in the context of a standard, 40-min "hands-on" activity that is part of the standard sixth-grade curriculum; (b) a 3-week teaching study, in which five teachers, informed by the cognitive science research concerning the development of scientific reasoning, designed and taught a special experimentation unit in their classrooms; and (c) a series of follow-up interviews, in which students' understanding of experimentation was reexamined. The findings from the two learning contexts-one more supportive of student reasoning than the other-inform us about the kinds of reasoning that are developing in middle-school students and the forms of instruction best suited to exercising those developing skills.  相似文献   

12.
Many studies have been conducted on hearing pupils' understanding of science. Findings from these studies have been used as grounds for planning instruction in school science. This article reports findings from an interview study of how deaf pupils in compulsory school reason about phenomena in a science context. The results reveal that there is variation in the extent to which pupils use scientific principles for reasoning about science phenomena. For some pupils, school science seems to have little to offer as a framework for reasoning. The results also generate questions about the need in school instruction of deaf and hard-of-hearing pupils to consider the specific teaching and learning situations in a deaf environment.  相似文献   

13.
The purpose of this qualitative interpretive research study was to examine high school students’ written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students’ scientific explanations and students’ perceptions of scientific explanations. Sixteen students from a rural high school in the Southeastern United States were the participants of this research study. The data consisted of students’ laboratory reports and individual interviews. The results indicated that students’ explanations were primarily based on first-hand knowledge gained in the science laboratories and mostly representing procedural recounts. Most students did not give explanations based on a theory or a principle and did not use deductive reasoning in their explanations. The students had difficulties explaining phenomena that involved intricate cause–effect relationships. Students perceived scientific explanation as the final step of a scientific inquiry and as an account of what happened in the inquiry process, and held a constructivist–empiricist view of scientific explanations. Our results imply the need for more explicit guidance to help students construct better scientific explanations and explicit teaching of the explanatory genre with particular focus on theoretical and causal explanations.  相似文献   

14.

Informal learning experiences have risen to the forefront of science education as being beneficial to students' learning. However, it is not clear in what ways such experiences may be beneficial to students; nor how informal learning experiences may interface with classroom science instruction. This study aims to acquire a better understanding of these issues by investigating one aspect of science learning, scientific reasoning ability, with respect to the students' informal learning experiences and classroom science instruction. Specifically, the purpose of this study was to investigate possible differences in students' scientific reasoning abilities relative to their informal learning environments (impoverished, enriched), classroom teaching experiences (non-inquiry, inquiry) and the interaction of these variables. The results of two-way ANOVAs indicated that informal learning environments and classroom science teaching procedures showed significant main effects on students' scientific reasoning abilities. Students with enriched informal learning environments had significantly higher scientific reasoning abilities compared to those with impoverished informal learning environments. Likewise, students in inquirybased science classrooms showed higher scientific reasoning abilities compared to those in non-inquiry science classrooms. There were no significant interaction effects. These results indicate the need for increased emphases on both informal learning opportunities and inquiry-based instruction in science.  相似文献   

15.
Many science educators, in the US and elsewhere, suppport the idea that all students should have fair and equal opportunities to become scientifically literate through authentic, real problem-based science education. However, this challenge requires teachers to find ways to help all students feel comfortable with, and connected to, science. Despite the general consensus around the ideal of science for all, science teacher education programmes have had little or no impact on preservice teachers' philosophies of teaching and learning, especially as it relates to serving underserved populations in science. In this paper, I explore community service-learning as one way of addressing the multicultural dimension of preservice education with the following three questions: In what ways does involving pre-service science teachers in community service-learning influence their views on multicultural science education, in theory and practice? What qualities of community service-learning make multicultural science education a realistic objective? How might service-learning be used to push our collective understanding of what an inclusive and liberatory multicultural science teaching practice could be? I explore these questions and propose further areas of research by using a case study involving service-learning from my own teaching-research with preservice students.  相似文献   

16.
The present study was designed to identify and characterize the major factors that influence entering science teacher candidates’ preferences for different types of instructional activities, and to analyze what these factors suggest about teacher candidates’ orientations towards science teaching. The study involved prospective teachers enrolled in the introductory science teaching course in an undergraduate science teacher preparation program. Our analysis was based on data collected using a teaching and learning beliefs questionnaire, together with structured interviews. Our results indicate that entering science teacher candidates have strong preferences for a few activity types. The most influential factors driving entering science teacher candidates’ selections were the potential of the instructional activities to motivate students, be relevant to students’ personal lives, result in transfer of skills to non‐science situations, actively involve students in goal‐directed learning, and implement curriculum that represents what students need to know. This set of influencing factors suggests that entering science teacher candidates’ orientations towards teaching are likely driven by one or more of these three central teaching goals: (1) motivating students, (2) developing science process skills, and (3) engaging students in structured science activities. These goals, and the associated beliefs about students, teaching, and learning, can be expected to favor the development or enactment of three major orientations towards teaching in this population of future science teachers: “motivating students,” “process,” and “activity‐driven.”  相似文献   

17.
18.
This paper attempts to engage the field in a discussion about what mathematics is needed for students to engage in society, especially with an increase in technology and digitalization. In this respect, mathematics holds a special place in STEM as machines do most of the calculations that students are taught in K-12. We raise questions about what mathematical proficiency means in today’s world and what shifts need to be made in both content and pedagogy to prepare students for 21st Century Skills and mathematical reasoning.  相似文献   

19.
We developed a rubric for measuring students' ability to reason and write scientifically. The Rubric for Science Writing (Rubric) was tested in a variety of undergraduate biology laboratory courses (total n = 142 laboratory reports) using science graduate students (teaching assistants) as raters. Generalisability analysis indicates that the Rubric provides a reliable measure of students' abilities (g = 0.85) in these conditions. Comparison of student performance in various biology classes indicated that some scientific skills are more challenging for students to develop than others and identified a number of previously unappreciated gaps in the curriculum. Our findings suggest that use of the Rubric provides three major benefits in higher education: (1) to increase substance and consistency of grading within a course, particularly those staffed by multiple instructors or graduate teaching assistants; (2) to assess student achievement of scientific reasoning and writing skills; and (3) when used in multiple courses, to highlight gaps in alignment among course assignments and provide a common metric for assessing to what extent the curriculum is achieving programmatic goals. Lastly, biology graduate students reported that use of the Rubric facilitated their teaching and recommended that training on the Rubric be provided to all teaching assistants.  相似文献   

20.
Background: There has been an increasing emphasis on empowering pre-service and in-service science teachers to attend student reasoning and use formative assessments to guide student learning in recent years. Purpose: The purpose of this study was to explore pre-service science teachers’ pedagogical capacity for formative assessment. Sample: This study took place in Turkey. The participants include 53 pre-service science teachers in their final year of schooling. All but two of the participants are female. Design and methods: We used a mixed-methods methodology in pursing this inquiry. Participants analyzed 28 responses to seven two-tiered questions given by four students of different ability levels. We explored their ability to identify the strengths and weaknesses in students’ answers. We paid particular attention to the things that the pre-service science teachers noticed in students’ explanations, the types of inferences they made about students’ conceptual understanding, and the affordances of pedagogical decisions they made. Results: The results show that the majority of participants made an evaluative judgment (i.e. the answer is correct or incorrect) in their analyses of students’ answers. Similarly, the majority of the participants recognized the type of mistake that the students made. However, they failed to successfully elaborate on fallacies, limitations, or strengths in student reasoning. We also asked the participants to make pedagogical decisions related to what needs to be done next in order to help the students to achieve academic objectives. Results show that 8% of the recommended instructional strategies were of no affordance, 64% of low-affordance, and 28% were of high affordance in terms of helping students achieve the academic objectives. Conclusion: If our goal is to improve pre-service science teachers’ noticing skills, and the affordance of feedback that they provide, engaging them in activities that asks them to attend to students’ ideas and reasoning may be useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号