首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
设计了以陀螺仪ENC-03以及MEMS加速度计MMA7260为传感器的姿态感知系统,选用16位单片机MC9S12XS128为控制核心处理器,完成对传感器信号的采集处理、车身控制以及人机交互的设计,实现小车自主控制平衡状态、运行速度以及转向角度大小等功能.实验结果表明该系统的性能满足设计要求.  相似文献   

2.
分析了两轮自平衡车的总体原理及数学模型,针对单个传感器在两轮平衡车姿态检测中存在的干扰和漂移误差问题,采用互补滤波算法对加速度计和陀螺仪输出的数据进行融合演算,对噪声干扰进行了良好的抑制,提高了输出姿态角的准确性。针对两轮平衡车自平衡控制问题,采用比例、积分、微分控制器,使平衡车的平衡系统得到良好的直立平衡控制。仿真数据和实验结果表明,该方法解决了单个传感器对姿态角测量误差大的问题,达到要求的控制性能。  相似文献   

3.
机器人小车是进行实践性教学、培养学生实践创新能力的良好实验平台,本文利用微控制器作为控制中心,通过陀螺仪和加速度计监测车身的平衡状态,根据平衡位置,通过PID控制原理驱动电动机实现两轮小车自主平衡,并通过智能手机的蓝牙通讯功能,达到手机控制小车运动的目的,实现控制—反馈的闭环控制系统。该系统可作为学生自主学习或综合设计的实验平台。  相似文献   

4.
提出了一种两轮平衡车的设计方案:采用陀螺仪MPU6050实时检测小车的运动姿态,核心控制板Arduino Uno根据从传感器中获得的数据,经过PID算法处理之后,输出相应的控制信号到电动机驱动电路,实现对小车电机的平衡控制.该平衡车可以通过蓝牙来进行控制,能够进行灵活的转向和前进动作,并能在运动中实现自主平衡,在外界有适度干扰的情况下能够自行调整并迅速恢复平衡状态.以该车为研究基础,可以搭载各种传感器,应用于复杂环境的勘探场合.  相似文献   

5.
设计了一种四旋翼飞行器的实验系统。电机调速器运用检测反电动势的方法控制三相全桥逆变电路从而调节无刷直流电机的转速。以ARM处理器为主控制器对电机调速器进行控制,从而实现飞行器的平衡和姿态控制。通过四旋翼工作模式的研究,利用加速度传感器和陀螺仪数据进行控制算法设计与研究,实现四旋翼飞行器姿态的控制调节。开发了仿真调试软件系统实时监测传感器的数据和控制量。实验表明,通过合适的控制算法可以四旋翼飞行器的平衡性能和各种飞行姿态,从而为学生提供了新的仿真和实践平台,有利于创新型实验教学任务的顺利开展。  相似文献   

6.
针对双轮竞速自平衡小车运动时的姿态倾角存在误差、平衡性不够好的问题,采用视觉传感器、卡尔曼滤波、高性能DSP、Wi-Fi通信等多种物联网技术,设计出一款基于视觉的双轮竞速自平衡小车。详细阐述了该小车的工作原理、系统架构、硬件设计及PID、卡尔曼滤波算法。实践表明,基于视觉的双轮竞速自平衡小车具有姿态倾角精准、运动平稳、转弯半径小——可达零转弯半径、前进后退切换自如等优点。  相似文献   

7.
为了响应节能环保、绿色出行倡议,缓解城市交通拥挤状况,提出一种基于 STM32F103C8T6 芯片控制的两轮平衡小车设计方案。以 MPU-6050 作为小车姿态传感器获取小车车体倾角和角速度,基于卡尔曼滤波算法对姿态传感器采集到的的数据进行滤波融合,利用霍尔编码器测量小车车轮转向和转速,运用 PID 算法对控制要求和采集的数据信息进行计算分析并输出控制 PWM,经由 TB6612 电机驱动模块驱动电机,实现小车自主平衡并具备一定的抗干扰能力。另外小车通过蓝牙模块与手机 APP 通信,可通过手机端控制小车前进、后 退、转弯等动作。  相似文献   

8.
为探究两轮自平衡车系统中惯性传感器的数据误差问题和车体平衡抗扰适应性,利用主控制器KL25、惯性传感器MPU6050等器件搭建了实验平台。基于四元数与互补滤波数据的融合解算车体姿态,通过数字PID算法调整PWM信号量的输出实现姿态的自我调整,最终实现对两轮车体系统的自平衡控制。测试结果表明,在小幅度偏角范围内车体能够及时调整姿态,表现出了良好自平衡性能。  相似文献   

9.
介绍了两轮自平衡机器人研究现状,建立系统动力学模型,并用MATLAB进行仿真验证控制方法的有效性。设计了自平衡机器人控制系统,包括软件和硬件系统。传感器采用陀螺仪以及加速度检测两轮自平衡机器人重力方向的倾斜角度和车轮的旋转加速度。经过STM32控制器处理后,采用LQR最优控制策略控制电机调整车轮状态使机器人保持平衡。通过实验样机验证了自平衡机器人控制策略的可行性。  相似文献   

10.
研究了无动量轮双模式前后纵向两轮平衡车的关键技术。针对陀螺仪采集的数据进行滑动滤波与互补滤波,优化得到姿态信息;不采用动量轮,设计程序对舵机和电机进行精确控制,以实现平衡车的动态平衡。实验结果表明,该纵向两轮平衡车姿态解算信息准确,控制决策可行,降低了舵机和电机的耦合关系的影响,在多种路面环境下电磁自主循迹与蓝牙遥控两种模式均可满足自平衡的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号