首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The event-triggered synchronization control problem is concerned for a class of complex networks with nonlinearly coupling function and adaptive coupling strength. Given a state-based event-trigger mechanism and the threshold, an event-triggered control method is introduced to make complex networks achieve exponential synchronization. By combining the Lyapunov stability theory and the knowledge of graph theory, a sufficient condition is established such that complex networks can achieve exponential synchronization. Then, the feasibility of the event-triggered control is analyzed. Moreover, the second-order Kuramoto oscillators is taken into account. And the event-triggered control strategy is used to make the oscillators achieve exponential synchronization. Meanwhile, two simulation results about the second-order Kuramoto oscillators are given to show the effectiveness of results.  相似文献   

2.
This paper addresses the problem of exponential synchronization of switched genetic oscillators with time-varying delays. Switching parameters and three types of nonidentical time-varying delays, that is, the self-delay, the intercellular coupling delay, and the regulatory delay are taken into consideration in genetic oscillators. By utilizing the Kronecker product techniques and ‘delay-partition’ approach, a new Lyapunov–Krasovskii functional is proposed. Then, based on the average dwell time approach, Jensen?s integral inequality, and free-weighting matrix method, delay-dependent sufficient conditions are derived in terms of linear matrix inequalities (LMIs). These conditions guarantee the exponential synchronization of switched genetic oscillators with time-varying delays whose upper bounds of derivatives are known and unknown, respectively. A numerical example is presented to demonstrate the effectiveness of our results.  相似文献   

3.
By only designing the internal coupling, quasi synchronization of heterogeneous complex networks coupled by N nonidentical Duffing-type oscillators without any external controller is investigated in this paper. To achieve quasi synchronization, the average of states of all nodes is designed as the virtual target. Heterogeneous complex networks with two kinds of nonlinear node dynamics are analyzed firstly. Some sufficient conditions on quasi synchronization are obtained without designing any external controller. Quasi synchronization means that the states of all nonidentical nodes will keep a bounded error with the virtual target. Then the heterogeneous complex network with impulsive coupling which means the network only has coupling at some discrete impulsive instants, is further discussed. Some sufficient conditions on heterogeneous complex network with impulsive coupling are derived. Based on these results, heterogeneous complex network can still reach quasi synchronization even if its nodes are only coupled at discrete impulsive instants. Finally, two examples are provided to verify the theoretical results.  相似文献   

4.
Extreme multistability is the coexistence of a large number of attractors which can be reached by varying initial conditions. In this paper we show how this fascinating phenomenon can be used for secure communication. The main advantage of the communication system based on extreme multistability over a conventional chaos-based communication system is its exceptionally high security. The proposed system consists of two identical six-order oscillators; one in the transmitter and another one in the receiver, each exhibiting the coexistence of a large number of chaotic attractors. The oscillators are synchronized using a private channel through one of the system variables, while the information is transmitted via a public channel through another variable. The information is encrypted by varying the initial condition of one of the state variables in the transmitter using a chaotic map, adhering message packages in a staggered form to the coexisting attractors within the same time series of another state variable, which leads to switching among the coexisting chaotic attractors. To ensure communication security, the duration of the packages is shorter than synchronization time, so that synchronization attacks are ineffective.  相似文献   

5.
《Journal of The Franklin Institute》2022,359(18):10741-10764
This paper deals with the problem of disturbance rejection and synchronization of fractional-order complex dynamical networks subject to nonlinear coupling strength and discontinuous nonlinear functions. Notably, the nonlinear coupling strength is linearised by using a well-known Takagi-Sugeno fuzzy approach. The considered system is transformed into a nominal form by employing the uncertainty and disturbance estimator-based control approach, which simplifies the control objective and improves the system performance. Second, the uncertainty and disturbance estimator is incorporated into the traditional feedback control scheme to reject the unknown disturbance and uncertainty. Then, the required synchronization conditions for both the discontinuous and continuous fractional-order systems are obtained by using Lyapunov stability and fractional calculus theories. Last, numerical examples are provided to illustrate the efficiency of the proposed control strategy, wherein it is shown that the system yields better satisfactory tracking performance and high robustness against possible disturbance and uncertainties and finite set of jump discontinuous nonlinear functions. Moreover, the selection of appropriate filter design is discussed for various kinds of disturbance signals.  相似文献   

6.
This paper is concerned with the problem of exponential synchronization of coupled complex networks with time-varying delays and stochastic perturbations (CCNTDSP). Different from previous works, both the internal time-varying delay and the coupling time-varying delay are taken into account in the network model. Meanwhile, an impulsive controller is designed to realize exponential synchronization in mean square of CCNTDSP. Combining the Lyapunov method with Kirchhoff’s Matrix Tree Theorem, some sufficient criteria are obtained to guarantee exponential synchronization in mean square of CCNTDSP. Furthermore, we apply the theoretical results to study exponential synchronization of stochastic coupled oscillators with the internal time-varying delay and the coupling time-varying delay. And a synchronization criterion is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of our theoretical results and the superiority of impulsive control.  相似文献   

7.
With advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in the understanding of the molecular properties of anesthetic agents. However, despite these advances, we still do not understand how anesthetic agents affect the properties of neurons that translate into the induction of general anesthesia at the macroscopic level. There is extensive experimental verification that collections of neurons may function as oscillators and the synchronization of oscillators may play a key role in the transmission of information within the central nervous system. This may be particularly relevant to understand the mechanism of action for general anesthesia. In this paper, we develop a stochastic synaptic drive firing rate model for an excitatory and inhibitory cortical neuronal network in the face of system time delays and stochastic input disturbances. In addition, we provide sufficient conditions for global asymptotic and exponential mean-square synchronization for this model.  相似文献   

8.
It is well known that control of Markovian systems is a difficult problem. This paper considers synchronization control of Markovian coupled nonlinear systems with random delays. A new control scheme is proposed. Sufficient conditions in terms of linear matrix inequalities (LMIs) are obtained such that the coupled system can be asymptotically synchronized onto an isolated system. The synchronization criteria include classical mode-dependent and mode-independent results as special cases. The design method of the control gains is also given. Compared with mode-dependent and mode-independent control methods, our results are more practical and have lower conservatism, respectively. Numerical simulations are given to verify the effectiveness of the theoretical results.  相似文献   

9.
This paper is concerned with the asymptotic synchronization problem of a class of nonlinear complex networks with faulty and sampling couplings. A new version of the adaptive control strategy is proposed to adjust control parameters to compensate for the adverse impact of network attenuation faults, nonlinearities and sampling errors. Based on the adaptive adjustment laws, an approach that is application of knowledge of electricity is introduced to physically realize the adaptive controllers. Using Lyapunov stability theory for the synchronization error system, asymptotic synchronization of the overall networks can be established for the nonlinearly sampling and faulty couplings. Finally, the proposed adaptive control schemes are tested by simulation on Chua?s circuit network.  相似文献   

10.
This investigation establishes the global synchronization of an array of coupled memristor-based neural networks with delays. The coupled networks that are considered can incorporate both the internal delay in each individual network and the transmission delay across different networks. The coupling scheme, which consists of a nonlinear term and a sign term, is rather general. In particular, it can be asymmetric, and admits the coexistence of excitatory and inhibitory connections. Based on an iterative approach, the problem of synchronization is transformed into solving a corresponding linear system of algebraic equations. Subsequently, the respective synchronization criteria, which depend on whether the transmission delay exists, are derived respectively. Three examples are given to illustrate the effectiveness of the theories presented in this paper. The synchronization of the systems in two examples cannot be handled by existing techniques.  相似文献   

11.
This paper investigates the adaptive synchronization for coupled harmonic oscillators with switching topology. Edge-based adaptive control protocols are proposed for both leaderless and leader-following synchronization for coupled harmonic oscillators with switching topology. Using Lyapunov stability theory, by parting the topology graph into connected components (containing at least two connected vertices) and isolated vertex components (containing a isolated vertex), full distributed adaptive synchronization conditions are obtained, which can guarantee that the synchronization conditions do not require any global information except a mild connection assumption. Finally numerical simulations are presented to illustrate the theoretical findings.  相似文献   

12.
This paper mainly focuses on the adaptive synchronization problem of multi-agent systems via distributed impulsive control method. Different from the existing investigations of impulsive synchronization with fixed time impulsive inputs, the proposed distributed variable impulsive protocol allows that the impulsive inputs are chosen within a time period (namely impulsive time window) which can be described by the distances of the left (right) endpoints or the centers between two adjacent impulsive time windows. Obviously, this kind of flexible control scheme is more effective in practical systems (especially for the complex environment with physical restrictions). Moreover, the proposed adaptive control technique is helpful to solve the problem with uncertain system parameters. By means of Lyapunov stability theory, impulsive differential equations and adaptive control technique, three sufficient impulsive consensus conditions are given to realize the synchronization of a class of multi-agent nonlinear systems. Finally, two numerical simulations are provided to illustrate the validity of the theoretical analysis.  相似文献   

13.
In this paper, we are concerned with the lag synchronization problem of fuzzy cellular neural networks (FCNNs) with time-varying delays. Some sufficient conditions on the exponential lag synchronization of the FCNNs are obtained using a nonlinear measure method. The exponential decay rate of synchronization error is estimated. We also show how to determine the controller gain matrix under this method. Finally, simulation examples are given to illustrate the effectiveness of our obtained results.  相似文献   

14.
This paper mainly investigates the fixed-time synchronization of memristor-based fuzzy cellular neural network (MFCNN) with time-varying delay. By utilizing differential inclusion, set-valued map theory, the definitions of finite-time and fixed-time stability, we convert the fixed-time synchronization control of the drive-response MFCNN into the equivalent fixed-time stability problem of the error system between the drive-response systems. Some novel sufficient conditions are derived to guarantee the fixed-time synchronization of the drive-response MFCNN based on a simple Lyapunov function and a nonlinear feedback controller. Meanwhile, the settling time can be estimated by simple calculations. Furthermore, these fixed-time synchronization criteria here are easy to validate and extend to the MFCNN without time-varying delay and general memristor-based neural networks. Finally, three numerical examples are given to illustrate the correctness of the main results.  相似文献   

15.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

16.
In this paper, a sliding-mode approach is proposed for exponential H synchronization problem of a class of master–slave time-delay systems with both discrete and distributed time-delays, norm-bounded nonlinear uncertainties and Markovian switching parameters. Using an appropriate Lyapunov–Krasovskii functional, some delay-dependent sufficient conditions and a synchronization law, which include the master–slave parameters are established for designing a delay-dependent mode-dependent sliding mode exponential H synchronization control law in terms of linear matrix inequalities. The controller guarantees the H synchronization of the two coupled master and slave systems regardless of their initial states. Two numerical examples are given to show the effectiveness of the method.  相似文献   

17.
Because of the high sensitivity of chaotic systems to their initial conditions, synchronization of chaotic systems with uncertain parameters has been a challenging problem especially in noisy environment. Since synchronization of the transmitter and receiver systems involves recursive estimation, recursive nonlinear filters are called for and the extended Kalman (EKF) filter and unscented Kalman (UKF) filter have been applied. However, such suboptimal filters incur high synchronization errors and provide no capacity for uncertain environment, which motivated the use of the neural filter for chaotic synchronization in this paper. The neural filter, which is a recurrent neural network, can approximate the minimum-variance to any degree. Furthermore, the neural filter can adapt to a uncertain environment without online filter weight adjustment, which is computationally efficient. Numerical experiments show that the chaotic synchronization scheme based on the neural filter outperforms those based on EKF and UKF by a large margin.  相似文献   

18.
This paper is concerned with master-slave synchronization for chaotic Lur'e systems subject to aperiodic sampled-data. To reduce the communication burden, an aperiodic event-triggered (APET) transmission scheme is introduced to determine the transmission of the latest sampling synchronization data. In order to reduce the design conservatism, a novel time-dependent Lyapunov functional (TDLF) is constructed to fully use the characteristics about sampling behavior, triggering error, and nonlinear part of the system, simultaneously. A more relaxed constraint criterion is then presented to ensure the positivity of the whole functional between two sampling instants. By partially resorting to the TDLF, the APET-based synchronization criterion depending on the upper and lower bounds of the uncertain sampling period is presented. The synchronization criterion based on aperiodic-sampling mechanism is also provided. Finally, a typical example about neural networks is offered to illustrate the benefit and validity of obtained synchronization methodologies.  相似文献   

19.
In this article, a novel synchronization scheme is proposed to achieve hybrid modified function projective synchronization (HMFPS) in two different dimensional complex nonlinear systems with fully unknown parameters. In the complex space, the response system are asymptotically synchronized up to the different order’s drive system by the state transformation with a scaling function matrix, and all of unknown parameters in both drive and response systems are achieved to be identified. Based on the Lyapunov stability theory, an adaptive controller and updated laws of parameters are developed. Respectively on the ways of increased order and reduced order, the corresponding numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.  相似文献   

20.
This paper studies the problem of composite synchronization and learning of multiple coordinated robot manipulators subject to heterogeneous nonlinear uncertain dynamics under the leader-follower framework. A new two-layer distributed adaptive learning control scheme is proposed, which consists of the first-layer distributed cooperative estimator and the second-layer decentralized deterministic learning controller. The first layer aims to enable each robotic agent to estimate the leader’s information. The second layer is responsible for not only controlling each individual robotic agent to track over desired reference trajectory, but also accurately identifying/learning each robot’s nonlinear uncertain dynamics. Design and implementation of this two-layer distributed controller can be carried out in a fully-distributed manner, which do not require any global information including global connectivity of the communication network. The Lyapunov method is applied to rigorously analyze stability and parameter convergence of the resulting closed-loop system. Numerical simulations on a team of two-degree-of-freedom robot manipulators have been conducted to demonstrate the effectiveness of the proposed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号