首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The purpose of this study was to develop a multiple linear regression model to predict treadmill VO2max scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill. The submaximal cycle protocol required participants to achieve a steady-state heart rate equal to at least 70% of age-predicted maximum heart rate (220-age), while the maximal treadmill graded exercise test required participants to exercise to volitional fatigue. Relevant submaximal cycle ergometer test data included a mean (±SD) ending steady-state heart rate and ending workrate equal to 164.2 ± 13.0 bpm and 115.3 ± 27.0 watts, respectively. Relevant non-exercise data included a mean (±SD) body mass (kg), perceived functional ability score, and physical activity rating score of 74.2 ± 15.1, 15.7 ± 4.3, and 4.7 ± 2.1, respectively. Multiple linear regression was used to generate the following prediction of (R = .91, standard error of estimates (SEE) = 3.36 ml·kg?1·min?1): VO2max = 54.513 + 9.752 (gender, 1 = male, 0 = female) – .297 (body mass, kg) + .739 (perceived functional ability, 2–26) + .077 (work rate, watts) – .072 (steady-state heart rate). Each predictor variable was statistically significant (p < .05) with beta weights for gender, body mass, perceived functional ability, exercise workrate, and steady-state heart rate equal to .594, –.544, .388, .305, and –.116, respectively. The predicted residual sums of squares (PRESS) statistics reflected minimal shrinkage (RPRESS = .90, SEEPRESS = 3.56 ml·kg?1·min?1) for the multiple linear regression model. In summary, the submaximal cycle ergometer protocol and accompanying prediction model yield relatively accurate VO2max estimates in healthy college-aged participants using both exercise and non-exercise data.  相似文献   

2.
This study was designed to develop a single-stage submaximal treadmill jogging (TMJ) test to predict VO2max in fit adults. Participants (N?=?400; men?=?250 and women?=?150), ages 18 to 40 years, successfully completed a maximal graded exercise test (GXT) at 1 of 3 laboratories to determine VO2max. The TMJ test was completed during the first 2 stages of the GXT. Following 3 min of walking (Stage 1), participants achieved a steady-state heart rate (HR) while exercising at a comfortable self-selected submaximal jogging speed at level grade (Stage 2). Gender, age, body mass, steady-state HR, and jogging speed (mph) were included as independent variables in the following multiple linear regression model to predict VO2max (R?=?0.91, standard error of estimate [SEE]?=?2.52 mL?·?kg?1?·?min?1): VO2max (mL?·?kg?1?·?min?1)?=?58.687?+?(7.520 × Gender; 0?=?woman and 1?=?man)?+?(4.334 × mph) ? (0.211 × kg) ? (0.148 × HR) ? (0.107 × Age). Based on the predicted residual sum of squares (PRESS) statistics (RPRESS?=?0.91, SEE PRESS?=?2.54 mL?·?kg?1?·?min?1) and small total error (TE; 2.50 mL?·?kg?1?·?min?1; 5.3% of VO2max) and constant error (CE; ?0.008 mL?·?kg?1?·?min?1) terms, this new prediction equation displays minimal shrinkage. It should also demonstrate similar accuracy when it is applied to other samples that include participants of comparable age, body mass, and aerobic fitness level. This simple TMJ test and its corresponding regression model provides a relatively safe, convenient, and accurate way to predict VO2max in fit adults, ages 18 to 40 years.  相似文献   

3.
To examine the reliability for peak responses of oxygen consumption (VO2peak) in relative (ml · kg-1 · min-1) and absolute (L/min-1) measures, as well as peak heart rate (HRpeak) during deep water running (DWR), 26 participants (12 women, 14 men) completed two DWR maximal graded exercise tests. To estimate the validity of the peak responses during DWR, a comparison to a treadmill running (TMR) graded exercise test (GXT) was completed. Test order was randomized. The DWR GXT utilized a system of weights and pulleys to increase intensity of exercise. Reliability of the DWR test for the total group was estimated using a repeated measures one-way analysis of variance (ANOVA) for VO2peak (ml · kg-1 · min-1, R = .96; L/min-1, R = .97) and HRpeak (R = .90). There were no significant differences (p > .05) between the two DWR tests for men or women for the means of VO2peak in relative units (men: 50.5 vs. 52.0 ml · kg-1 · min-1; women: 37.1 vs. 36.8 ml · kg-1 · min-1), or absolute units (men: 4.1 vs. 4.1 L/min-1; women: 2.2 vs. 2.2 L/min-1), or HR (men: 174 vs. 175 beats per minute (bpm); women: 181 vs. 183 bpm). There was a significant correlation between the average of the two DWR tests and TMR for the total group for VO2peak for relative (r = .88, p = .001) and absolute (r = .93, p = .001) measures as well as HRpeak (r = .64, p = .001). Peak responses during the DWR protocol were judged to be reliable. Also, the correlation for the variables between DWR and TMR indicates a positive relation between peak responses. The correlation suggests validity of predicting TMR peak responses from DWR peak responses; however, this conclusion may be questionable due to the low sample size and the large systemic differences between tests. Finally, HRpeak and VO2peak were lower during DWR than TMR for both men and women.  相似文献   

4.
The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO2max) based on a maximal treadmill graded exercise test (GXT; George, 1996) George, J. D. 1996. Alternative approach to maximal exercise testing and VO2max prediction in college students. Research Quarterly for Exercise and Sport, 67: 452457. [Taylor & Francis Online], [Web of Science ®] [Google Scholar]. Participants (N?=?100), ages 18–65 years, reached a maximal level of exertion (mean?±?standard deviation [SD]; maximal heart rate [HRmax]?=?185.2?±?12.4 beats per minute (bpm); maximal respiratory exchange ratio [RERmax]?=?1.18?±?0.05; maximal rating of perceived exertion (RPEmax)?=?19.1?±?0.7) during the GXT to assess VO2max (mean?±?SD; 40.24?±?9.11 mL·kg?1·min?1). Multiple linear regression generated the following prediction equation (R?=?.94, standard error of estimate [SEE]?=?3.18 mL·kg?1·min?1, %SEE?=?7.9): VO2max (mL·kg?1·min?1)?=?13.160?+?(3.314 × gender; females?=?0, males?=?1) ? (.131 × age) ? (.334 × body mass index (BMI))?+?(5.177 × treadmill speed; mph)?+?(1.315 × treadmill grade; %). Cross validation using predicted residual sum of squares (PRESS) statistics revealed minimal shrinkage (Rp ?=?.93 and SEE p ?=?3.40 mL·kg?1·min?1); consequently, this model should provide acceptable accuracy when it is applied to independent samples of comparable adults. Standardized β-weights indicate that treadmill speed (.583) was the most effective at predicting VO2max followed by treadmill grade (.356), age (?.197), gender (.183), and BMI (?.148). This study provides a relatively accurate regression model to predict VO2max in relatively fit men and women, ages 18–65 years, based on maximal exercise (treadmill speed and grade), biometric (BMI), and demographic (age and gender) data.  相似文献   

5.
Abstract

The purpose of this study was to develop a regression equation to predict maximal oxygen uptake (VO2max) based on nonexercise (N-EX) data. All participants (N= 100), ages 18–65 years, successfully completed a maximal graded exercise test (GXT) to assess VO2max (M= 39.96 mL·kg -1· min -1 , SD = 9.54). The N-EX data collected just before the maximal GXT included the participant's age; gender; body mass index (BMI); perceived functional ability (PFA) to walk, jog, or run given distances; and current physical activity (PA-R) level. Multiple linear regression generated the following N-EX prediction equation (R = .93, SEE = 3.45 mL·kg -1· min -1 , %SEE= 8.62): VO2max (mL·kg -1· min -1 ) = 48.0730 + (6.1779 x gender; women = 0, men = 1) – (0.2463 x age) – (0.6186 x BMI) + (0.7115 x PFA) + (0.6709 x PA-R). Cross validation using PRESS (predicted residual sum of squares) statistics revealed minimal shrinkage (R p = .91 and SEE p = 3.63 mL·kg -1· min -1 ); thus, this model should yield acceptable accuracy when applied to an independent sample of adults (ages 18–-65 years) with a similar cardiorespiratory fitness level. Based on standardized β-weights, the PFA variable (0.41) was the most effective at predicting VO2max followed by age (-0.34), gender (0.33), BMI (-0.27), and PA-R (0.16). This study provides a N-EX regression model that yields relatively accurate results and is a convenient way to predict VO2max in adult men and women.  相似文献   

6.
Abstract

This study was conducted to determine if the Polar FT40 could accurately track changes in maximal oxygen consumption (VO2max) in a group of female soccer players. Predicted VO2max (pVO2max) via the Polar FT40 and observed VO2max (aVO2max) from a maximal exercise test on a treadmill were determined for members of a collegiate soccer team (n = 20) before and following an 8-week endurance training protocol. Predicted (VO2max and aVO2max measures were compared at baseline and within 1 week post-training. Change values (i.e., the difference between pre to post) for each variable were also determined and compared. There was a significant difference in aVO2max (pre = 43.6 ± 2.4 ml · kg · min?1, post = 46.2 ± 2.4 ml · kg · min?1, P < 0.001) and pVO2max (pre = 47.3 ± 5.3 ml · kg · min?1, post = 49.7 ± 6.2 ml · kg · min?1, P = 0.009) following training. However, predicted values were significantly greater at each time point compared to observed values (P < 0.001 at pre and P = 0.008 at post). Furthermore, there was a weak correlation between the change in aVO2max and the change in pVO2max (r = 0.18, P = 0.45). The Polar FT40 does not appear to be a valid method for predicting changes in individual VO2max following 8 weeks of endurance training in female collegiate soccer players.  相似文献   

7.
Abstract

We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO2) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion, with 0, 25, 50, 75, and 100% water-jet resistance. All session treadmill velocities increased every 3 min from 53.6 to 187.8 m·min-1. Cardiorespiratory responses were similar between LTM and UTM when jet resistance for UTM was ≥ 50%. Using multiple regression analysis, weight-relative VO2 could be estimated as: VO2 (mLO2·kg-1·min-1) = 0.19248 · height (cm) + 0.17422 · jet resistance (% max) + 0.14092 · velocity (m·min-1) - 0.12794 · weight (kg) - 27.82849, R2= .82. Our data indicate that similar LTM and UTM cardiorespiratory responses are achievable, and we provide a reasonable estimate of UTM VO2.  相似文献   

8.
The purpose of this study was to develop a step test with a personalized step rate and step height to predict cardiorespiratory fitness in 80 college-aged males and females using the self-reported perceived functional ability scale and data collected during the step test. Multiple linear regression analysis yielded a model (R = 0.90, SEE = 3.43 mL·kg?1·min?1) that included gender, body mass, perceived functional ability, step rate, and recovery heart rate. Based on the standardized β-weights, gender explained the largest proportion of variance in VO2max values followed by perceived functional ability. The cross validation predicted residual sum of squares statistics show minimal shrinkage (RPRESS = 0.88, SEEPRESS = 3.57 mL·kg?1·min?1) in the accuracy of the regression model. This study provides a model to predict VO2max from non-exercise data and data collected during an individualized multistage step test that is accurate, time-efficient, and easy to administer.  相似文献   

9.
The aims of this study were to quantify the effects of factors such as mode of exercise, body composition and training on the relationship between heart rate and physical activity energy expenditure (measured in kJ?·?min?1) and to develop prediction equations for energy expenditure from heart rate. Regularly exercising individuals (n = 115; age 18?–?45 years, body mass 47?–?120?kg) underwent a test for maximal oxygen uptake ([Vdot]O2max test), using incremental protocols on either a cycle ergometer or treadmill; [Vdot]O2max ranged from 27 to 81?ml?·?kg?1?·?min?1. The participants then completed three steady-state exercise stages on either the treadmill (10?min) or the cycle ergometer (15?min) at 35%, 62% and 80% of [Vdot]O2max, corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and respiratory exchange ratio data were collected during each stage. A mixed-model analysis identified gender, heart rate, weight, [Vdot]2max and age as factors that best predicted the relationship between heart rate and energy expenditure. The model (with the highest likelihood ratio) was used to estimate energy expenditure. The correlation coefficient (r) between the measured and estimated energy expenditure was 0.913. The model therefore accounted for 83.3% (R 2) of the variance in energy expenditure in this sample. Because a measure of fitness, such as [Vdot]O2max, is not always available, a model without [Vdot]O2max included was also fitted. The correlation coefficient between the measured energy expenditure and estimates from the mixed model without [Vdot]O2max was 0.857. It follows that the model without a fitness measure accounted for 73.4% of the variance in energy expenditure in this sample. Based on these results, we conclude that it is possible to estimate physical activity energy expenditure from heart rate in a group of individuals with a great deal of accuracy, after adjusting for age, gender, body mass and fitness.  相似文献   

10.
This study was conducted to evaluate the accuracy of 2 regression models (Dolgener, Hensley, Marsh, & Fjelstul, 1994; Kline et al., 1987) in the prediction of VO2 max College-age men and women (N = 37) performed, in a counter-balanced order, a 1/4-mile walk test, a 1-mile walk test, followed by a maximal graded exercise test. For both walking tests, participants were instructed to self-select a fast (but less than maximal) steady exercise pace. For the 1-mile walk, the applicable data (e.g., age, gender, body weight, elapsed 1-mile exercise time, and ending exercise heart rate) were inserted into the Dolgener et al. (1994) equation and Kline et al. equation, respectively, to predict VO2 max A similar approach was taken to predict VO2 max for the 1/4-mile walk, except that elapsed exercise times were first multiplied by 4 to get 1-mile walk equivalents (because both equations are designed to predict VO2 max based on 1-mile data). The Kline et al. equation provided relatively accurate estimates of observed VO2 max values with mean residuals ranging from -0.36 to + 1.59 ml kg-1; min-1 and correlations ranging from .81 to .84. The percentage of predicted and observed VO2 max values within 4.5 ml kg-1; min-1; ranged from 67.6% to 75.7%. The Dolgener et al. (1994) equation, on the other hand, underpredicted observed VO2 max values with mean residuals ranging from -5.67 to -6.83 ml kg-11; min-1; and correlations ranging from .84 to .85. The percentage of predicted and observed VO2 max values within 4.5 ml kg-1; min-1; ranged from 18.9% to 43.2%. The results of this study provide evidence that the 1/4-mile walk predicts VO2 max with about the same accuracy as the 1-mile walk.  相似文献   

11.
The purpose of the study was to investigate which physiological parameters would most accurately predict a 6-min, all-out, double-poling (DP) performance in recreational cross-country skiers. Twelve male recreational cross-country skiers performed tests consisting of three series lasting 10 s, one lasting 60 s, plus a 6-min, all-out, DP performance test to estimate mean and peak power output. On a separate day, gross mechanical efficiency (GE) was estimated from a 10-min, submaximal, DP test and maximal oxygen consumption (VO2 max) was estimated from an incremental treadmill running test. Power was measured after each stroke from the acceleration and deceleration of the flywheel that induced the friction on the ergometer. The power was shown to the skier on a small computer placed on the ergometer. A multivariable correlation analysis showed that GE most strongly predicted 6-min DP performance (r = 0.79) and interestingly, neither DP VO2 max, nor treadmill-running VO2 max, correlated with 6-min DP performance. In conclusion, GE correlated most strongly with 6-min DP performance and GE at the ski ergometer was estimated to be 6.4 ± 1.1%. It is suggested that recreational cross-country skiers focus on skiing technique to improve gross mechanical efficiency during intense DP.  相似文献   

12.
The purpose of this study was to investigate the effect of skate blade hollow on oxygen consumption during forward skating on a treadmill. Varsity level female hockey players (n = 10, age = 21.7 years) performed skating tests at three blade hollows [0.25 in (6.35 mm), 0.50 in (12.7 mm), and 0.75 in (19.05 mm)]. The subjects skated for four minutes at three submaximal velocities (12, 14 and 16 km h−1), separated by five minutes of passive recovery. In addition, a VO2max test was performed on the day that the subjects skated at the 0.50 in hollow. The VO2max test commenced at 14 km h−1 and increased by 1 km h−1 each minute until volitional exhaustion was achieved. Four variables were measured for each skating bout, volume of gas expired (V E), volume of oxygen consumed (VO 2), heart rate (HR) and rating of perceived exertion (RPE). No significant differences (p < 0.05) were found in any of the four test variables (V E, VO2, HR, RPE) across the three skate hollows. These results show that when skating on a treadmill at submaximal velocities, skate blade hollow has no significant effect onV E, VO2, HR or RPE.  相似文献   

13.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

14.
Investigations in the 1990s evaluated the influence of breathing assemblies on respiratory variables at rest and during exercise; however, research on new models of breathing assemblies is lacking. This study compared metabolic gas analysis data from a mouthpiece with a noseclip (MOUTH) and a face mask (MASK). Volunteers (7 males, 7 females; 25.1 ± 2.7 years) completed two maximal treadmill tests within 1 week, one MOUTH and one MASK, in random order. The difference in maximal oxygen consumption (VO2max) between MOUTH (52.7 ± 11.3 ml · kg?1 · min?1) and MASK (52.2 ± 11.7 ml · kg?1 · min?1) was not significant (P = 0.53). Likewise, the mean MOUTH–MASK differences in minute ventilation (VE), fraction of expired oxygen (FEO2) and carbon dioxide (FECO2), respiration rate (RR), tidal volume (Vt), heart rate (HR), and rating of perceived exertion (RPE) at maximal and submaximal intensities were not significant (P > 0.05). Furthermore, there was no systematic bias in the error scores (r = ?0.13, P = 0.66), and 12 of the 14 participants had a VO2max difference of ≤3 ml · kg?1 · min?1 between conditions. Finally, there was no clear participant preference for using the MOUTH or MASK. Selection of MOUTH or MASK will not affect the participant’s gas exchange or breathing patterns.  相似文献   

15.
Previous investigators evaluated running economy (RE) with participants running at the same speed by examining the oxygen consumption (VO2) variance. This study was designed to examine the influence of running speed (RS), exercise intensity, body composition, stride length, and gender on RE. Physical characteristics (mean ± standard deviation) of 22 male and 21 female participants were: age (years) = 27.3 ± 3.5 and 26.0 ± 4.0, and VO2peak (ml · kg-1 · min-1) = 53.9 ± 7.7 and 41.2 ± 5.4, respectively. Participants ran 6 min in duration (0% grade) at an estimated 75% of VO2peak. Multiple regression determined which variables accounted for a significant proportion of RE variance. The following equation defined RE: VO2 (ml · kg-1 · min-1) = (RS2 [m/min] x 0.00048) + (HR% x 0.158) + 7.692. The equation resulted in an R2 of .917 and a standard error of estimate (SEE) of 1.8 ml · kg-1 · min-1. Nonsignificance of regression slope and intercept revealed the RE model could be used for men and women. When cross-validated on a separate sample of physically active participants, the derived model was also highly accurate for evaluating RE (R2 = .901, SEE = 2.3 ml · kg-1 · min-1).  相似文献   

16.
Abstract

The purpose of this study was to determine the relationship between female distance running performance on a 10 km road race and body composition, maximal aerobic power ([Vdot]O2 max ), running economy (steady-state [Vdot]O2 at standardized speeds), and the fractional utilization of [Vdot]O2max at submaximal speeds (% [Vdot]O2max ). The subjects were 14 trained and competition–experienced female runners. The subjects averaged 43.7 min on the 10 km run, 53.0 ml · kg?1 · min?1 on [Vdot]O2max , and 33.9, 37.7, and 41.8 ml · kg?1 · min?1 for steady-state [Vdot]O2 at three standardized running paces (177, 196, and 215 m · min?1). The mean values for fractional utilization of aerobic capacity for these three submaximal speeds were 64.3, 71.4, and 79.3% [Vdot]O2max , respectively. Significant (p < 0.01) relationships with performance were found for [Vdot]O2max (r = ?0.66) and % [Vdot]O2max at a standardized speed (r = 0.65). No significant (p > 0.05) relationships were found between running performance and either running economy or relative body fat. As with male heterogeneous groups, trained female road racing performance is significantly related to [Vdot]O2max and % [Vdot]O2max , but not related to body composition or running economy. It was further concluded that on a 10 km road race, trained females operate at a % [Vdot]O2max similar to that of their trained male counterparts.  相似文献   

17.
The first purpose of this study was to determine the norm-referenced predictive validity of maximal oxygen consumption (VO2) max estimated from the progressive aerobic cardiovascular endurance run (PACER, FITNESSGRAM®; Cooper Institute for Aerobic Research, Dallas, TX) performance by 3 separate formulas: the Leger, Mercier, Gadoury, and Lambert (1988) 8- to 19-year-old equation; the Leger et al. adult equation; and the Ramsbottom, Brewer, and Williams (1988) equation. Norm-referenced intraclass stability reliability coefficients (n = 19) were determined to be .96 for PACER and estimated VO2 max values. Only the VO2 max values estimated from the Leger et al. adult equation (47.29 ± 7.02 vs. 50.45 ± 8.01 rnL · kg-1 · min-1 measured; p < .0001) were shown to be valid (r = .82; standard error of estimate [SEE] = 4.59; Error = 5.58; percentage of participants whose measured VO2 max fell within ± 4.5 mL · kg-1 · min-1 of estimated VO2 max = 59.7; N = 60 female participants ± 59 male participants). The second purpose was to cross-validate the Cureton, Sloninger, O'Bannon, Black, and McCormack (1995) equation for the estimation of VO2 max from the one-mile run (1-MR). The results (estimated VO2 max = 48.06 ± 6.57 vs. 50.45 ± 8.01 rnL · kg-1 · min-1 measured; p < .0001; r= .82; SEE = 4.53; Error = 5.27; percentage = 61.7; N = 50 female ± 44 male participants) indicated a norm-referencedpredictive validity similar to the Leger et al. adult PACER equation. There was no significant difference between the VO2max estimated by the Leger et al. 8- to 19-year-old and the Cureton et al. equations. Correlations between 1-MR time and measured VO2 max (r = .78) and PACER laps and measured 90, maw (r = 33) supported norm-referenced concurrent validity in this population. The third purpose was to determine the criterion-referenced reliability and validity of the PACER and 1-MR. Criterion-referenced reliability indicated a proportion of agreement (P) of .95 and a modified Kappa (K) of .90 for PACER laps and estimated VO2 max. A .88 proportion of correct classification decisions (c) with a phi coefficient (?) of .08 was determined for criterion-referenced validity of the Leger et al. adult equation. Comparable validity coefficients for the Cureton et al. equation were c = .97 and ? = .65. Criterion-referenced equivalence reliability (P) was .90 with a Kq of .80 for the 1-MR and PACER. It was concluded that (a) the Leger et al. (1988) adult equation is the preferred equation to use to estimate VO2 max from PACER scores for college aged individuals; (b) the Cureton et al. (1995) equation is valid for estimating VO2 max in college students from the 1-MR; and (c) the FITNESSGRAM® (Cooper Institute for Aerobics Research, 1992) criterion-referenced standards using data from the Cureton et al. and Leger et al. adult equations were both reliable and valid in this population. The 1-MR and the PACER may be used interchangeably in this age group to assess cardiovascular fitness either from performance scores or estimated VO2 max if the Leger et al. adult equation is used for PACER VO2 max prediction.  相似文献   

18.
The purpose of this study was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) utilizing a canoeing ergometer on endurance determinants, as well as aerobic and anaerobic performances among flat-water canoeists. Fourteen well-trained male flat-water canoeists were divided into an HIIT group or an MICT group. All subjects performed a continuous graded exercise test (GXT) and three fixed-distance (200, 500, and 1000?m) performance tests on a canoeing ergometer to determine canoeing economy, peak oxygen uptake (VO2peak), and power at VO2peak, and to calculate the critical velocity (CV) and anaerobic work capacity before and after the training programmes. The training programme involved training on a canoeing ergometer three times per week for four weeks. HIIT consisted of seven 2 min canoeing bouts at an intensity of 90% VO2peak separated by 1 min of rest. The MICT group was trained at an intensity of 65% VO2peak continuously for 20 min. After four weeks of training, performance in the 200-m distance test and the power at VO2peak significantly improved in the HIIT group; performance in the 500?m and 1000?m distances and CV significantly improved in the MICT group. However, all variables were not significantly different between groups. It is concluded that HIIT for four weeks is an effective training strategy for improvement of short-distance canoeing performance. In contrast, MICT improves middle-distance canoeing performances and aerobic capacity.  相似文献   

19.
Non-exercise equations developed from self-reported physical activity can estimate maximal oxygen uptake (VO2max) as well as sub-maximal exercise testing. The International Physical Activity Questionnaire is the most widely used and validated self-report measure of physical activity. This study aimed to develop and test a VO2max estimation equation derived from the International Physical Activity Questionnaire–Short Form. College-aged males and females (n = 80) completed the International Physical Activity Questionnaire–Short Form and performed a maximal exercise test. The estimation equation was created with multivariate regression in a gender-balanced subsample of participants, equally representing five levels of fitness (n = 50) and validated in the remaining participants (n = 30). The resulting equation explained 43% of the variance in measured VO2max (standard error of estimate = 5.45 ml·kg–1·min–1). Estimated VO2max for 87% of individuals fell within acceptable limits of error observed with sub-maximal exercise testing (20% error). The International Physical Activity Questionnaire–Short Form can be used to successfully estimate VO2max as well as sub-maximal exercise tests. Development of other population-specific estimation equations is warranted.  相似文献   

20.
Abstract

The aims of the present study were to assess the maximal oxygen uptake and body composition of adult Chinese men and women, and to determine how these variables relate to age. The cross-sectional sample consisted of 196 men and 221 women aged 20 – 64 years. Maximal oxygen uptake ([Vdot]O2max) was determined by indirect calorimetry during a maximal exercise test on an electrically braked cycle ergometer. The correlations between [Vdot]O2max and fat mass were ?0.52 in men and ?0.58 in women. Linear regression defined the cross-sectional age-related decline in [Vdot]O2max as 0.35 ml · kg?1 · min?1 · year?1 in men and 0.30 ml · kg?1 · min?1 · year?1 in women. Multiple regression analysis showed that more than 50% of this cross-sectional decline in [Vdot]O2max was due to fat mass, lean mass, and age. Adding fat mass and lean mass to the multiple regression models reduced the age regression mass from 0.35 to 0.24 ml · kg?1 · min?1 · year?1 in men and from 0.30 to 0.15 ml · kg?1 · min?1 · year?1 in women. We conclude that age, fat mass, and lean mass are independent determinants of maximal oxygen uptake in Chinese adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号