首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Despite the growing interest in minimalist shoes, no studies have compared the efficacy of different types of minimalist shoe models in reproducing barefoot running patterns and in eliciting biomechanical changes that make them differ from standard cushioned running shoes. The aim of this study was to investigate the acute effects of different footwear models, marketed as “minimalist” by their manufacturer, on running biomechanics. Six running shoes marketed as barefoot/minimalist models, a standard cushioned shoe and the barefoot condition were tested. Foot–/shoe–ground pressure and three-dimensional lower limb kinematics were measured in experienced rearfoot strike runners while they were running at 3.33 m · s?1 on an instrumented treadmill. Physical and mechanical characteristics of shoes (mass, heel and forefoot sole thickness, shock absorption and flexibility) were measured with laboratory tests. There were significant changes in foot strike pattern (described by the strike index and foot contact angle) and spatio-temporal stride characteristics, whereas only some among the other selected kinematic parameters (i.e. knee angles and hip vertical displacement) changed accordingly. Different types of minimalist footwear models induced different changes. It appears that minimalist footwear with lower heel heights and minimal shock absorption is more effective in replicating barefoot running.  相似文献   

2.
The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h?1 in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h?1 (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.  相似文献   

3.
This study investigated whether male runners improve running performance, running economy, ankle plantar flexor strength, and alter running biomechanics and lower limb bone mineral density when gradually transitioning to using minimalist shoes for 100% of weekly running. The study was a planned follow-up of runners (n?=?50) who transitioned to minimalist or conventional shoes for 35% of weekly structured training in a previous 6-week randomised controlled trial. In that trial, running performance and economy improved more with minimalist shoes than conventional shoes. Runners in each group were instructed to continue running in their allocated shoe during their own preferred training programme for a further 20 weeks while increasing allocated shoe use to 100% of weekly training. At the 20-week follow-up, minimalist shoes did not affect performance (effect size: 0.19; p?=?0.218), running economy (effect size: ≤?0.24; p?≥?0.388), stride rate or length (effect size: ≤?0.12; p?≥?0.550), foot strike (effect size: ≤?0.25; p?≥?0.366), or bone mineral density (effect size: ≤?0.40; p?≥?0.319). Minimalist shoes increased plantar flexor strength more than conventional shoes when runners trained with greater mean weekly training distances (shoe*distance interaction: p?=?0.036). After greater improvements with minimalist shoes during the initial six weeks of a structured training programme, increasing minimalist shoe use from 35% to 100% over 20 weeks, when runners use their own preferred training programme, did not further improve performance, running economy or alter running biomechanics and lower limb bone mineral density. Minimalist shoes improved plantar flexor strength more than conventional shoes in runners with greater weekly training distances.  相似文献   

4.
5.
Compared to competitive runners, recreational runners appear to be more prone to injuries, which have been associated with foot strike patterns. Surprisingly, only few studies had examined the foot strike patterns outside laboratories. Therefore, this study compared the foot strike patterns in recreational runners at outdoor tracks with previously reported data. We also investigated the relationship between foot strike pattern, speed, and footwear in this cohort. Among 434 recreational runners analysed, 89.6% of them landed with rearfoot strike (RFS). Only 6.9 and 3.5% landed with midfoot and forefoot, respectively. A significant shift towards non-RFS was observed in our cohort, when compared with previously reported data. When speed increased by 1 m/s, the odds of having forefoot strike and midfoot strike relative to RFS increased by 2.3 times and 2.6 times, respectively. Runners were 9.2 times more likely to run with a forefoot strike in minimalists compared to regular running shoes, although 70% of runners in minimalists continued to use a RFS. These findings suggest that foot strike pattern may differ across running conditions and runners should consider these factors in order to mitigate potential injury.  相似文献   

6.
BackgroundPrevious studies of foot strike patterns of distance runners in road races have typically found that the overwhelming majority of shod runners initially contact the ground on the rearfoot. However, none of these studies has attempted to quantify foot strike patterns of barefoot or minimally shod runners. This study classifies foot strike patterns of barefoot and minimally shod runners in a recreational road race.MethodsHigh-speed video footage was obtained of 169 barefoot and 42 minimally shod distance runners at the 2011 New York City Barefoot Run. Foot strike patterns were classified for each runner, and frequencies of forefoot, midfoot, and rearfoot striking were compared between the barefoot and minimally shod groups.ResultsA total of 59.2% of barefoot runners were forefoot strikers, 20.1% were midfoot strikers, and 20.7% were rearfoot strikers. For minimally shod runners, 33.3% were forefoot strikers, 19.1% were midfoot strikers, and 47.6% were rearfoot strikers. Foot strike distributions for barefoot and minimally shod runners were significantly different both from one another and from previously reported foot strike distributions of shod road racers.ConclusionFoot strike patterns differ between barefoot and minimally shod runners, with forefoot striking being more common, and rearfoot striking less common in the barefoot group.  相似文献   

7.
The effects of running with or without shoes on injury prevention have been extensively studied, and several investigations have assessed biomechanical differences between them. However, findings are not consensual and further insights on biomechanical load associated with differently shod or barefoot conditions may be needed. This study aimed to observe if habitually shod marathon runners show acute alterations when running barefoot or with minimalist shoes, and to determine whether the running kinematical adaptations of wearing minimalist shoes were similar to barefoot running. Twelve male marathon runners ran on the treadmill at their average marathon pace in different footwear conditions: habitual running shoes, minimalist shoes, and barefoot. High-resolution infrared cameras and visual 3D software were used to assess kinematic data. The following parameters were studied: foot strike angle, cycle time, stance time, normalized stride length, hip, knee, and ankle angular position at initial contact, and their respective range-of-motion (ROM) during stance phase. Contrary to the expectations, it was found that highly trained habitually shod elite marathon runners changed their lower limb kinematic pattern both when running barefoot or wearing minimalist shoes. Minimalist shoes showed a trend towards intermediate biomechanical effects between running with and without shoes.  相似文献   

8.
Compared to traditional tennis shoes, using 0-drop shoes was shown to induce an immediate switch from rear- to forefoot strike pattern to perform an open stance tennis forehand for 30% of children tennis players. The purpose of the study was to examine the long-term effects of a gradual reduction in the shoe drop on the biomechanics of children tennis players performing open stance forehands. Thirty children tennis players participated in 2 laboratory biomechanical test sessions (intermediate: +4 months and final: +8 months) after an inclusion visit where they were randomly assigned to control (CON) or experimental (EXP) group. CON received 12-mm-drop shoes twice, whereas EXP received 8?mm then 4-mm-drop shoes. Strike index indicated that all CON were rearfoot strikers in intermediate and final test sessions. All EXP were rearfoot strikers in intermediate test session, but half the group switched towards a forefoot strike pattern in final test session. This switch resulted in a decreased loading rate of the ground reaction force (?73%, p?=?.005) but increased peak ankle plantarflexors moment (+47%, p?=?.050) and peak ankle power absorption (+107%, p?=?.005) for these participants compared with CON. Biomechanical changes associated with the long-term use of partial minimalist shoes suggest a reduction in heel compressive forces but an increase in Achilles tendon tensile forces.  相似文献   

9.
This study sought to compare the kinetics and kinematics data in a group of habitual shod runners when running in traditional running shoes and newly designed minimalist shoes with lug platform. This novel footwear design claims to simulate barefoot running and reduce energy loss during impact. We compared footstrike angle (FSA), vertical average (VALR) and instantaneous (VILR) loading rates, energy loss and initial vertical stiffness between two shoe conditions. Runners demonstrated a decreased FSA while running in minimalist shoes with lug platform than traditional shoes (= 0.003; Cohen’s = 0.918). However, we did not observe a landing pattern transition. VALR and VILR between two footwear conditions showed no significant difference (= 0.191–0.258; Cohen’s = 0.304–0.460). Initial vertical stiffness (= 0.032; Cohen’s = 0.671) and energy loss (= 0.044; Cohen’s = 0.578) were greater when running in minimalist shoes with lug platform. The results show that minimalist shoes with lug platform reduce the FSA but may not lead to a landing pattern switch or lower vertical loading rates. Interestingly, the new shoe design leads to a greater energy loss than traditional running shoes, which could be explained by a higher initial vertical stiffness.  相似文献   

10.
ABSTRACT

Running is an activity with a consistently high injury rate. Running footwear design that mimics barefoot running has been proposed to reduce injury rate by increasing the strength of foot structures. However, there is little evidence to support this. The purpose of the current study is to use shear wave ultrasound elastography to examine material properties (shear modulus) of intrinsic foot structures in experienced minimally and traditionally shod runners. It is hypothesized that minimalist runners will exhibit increased stiffness compared to controls demonstrating the strengthening of these structures. Eighteen healthy runners (8 minimalist and 10 traditionalist), running a minimum of 10 mi · wk?1, participated. Elastography scans were performed on the left foot of each participant. There is no apparent stiffening of foot structures associated with wearing minimalist shoes. Only the FHB tendon is different between shoe types and, contrary to the hypothesis, was stiffer in traditionalist compared to minimalist runners (257.26 ± 51.64 kPa vs 160.88 ± 27.79 kPa, respectively). A moderate positive (r = 0.7) relationship between training load and tendon stiffness suggests strengthening of tendon when running in traditional shoes. If running in minimalist shoes increases loading on these structures without resulting in stronger tissues, it is possible that minimalist footwear may increase injury risk.  相似文献   

11.
The purpose of this study was to examine the effects of step length and foot strike pattern along with their interaction on tibiofemoral joint (TFJ) and medial compartment TFJ kinetics during running. Nineteen participants ran with a rear foot strike pattern at their preferred speed using a short (?10%), preferred, and long (+10%) step length. These step length conditions were then repeated using a forefoot strike pattern. Regardless of foot strike pattern, a 10% shorter step length resulted in decreased peak contact force, force impulse per step, force impulse per kilometre, and average loading rate at the TFJ and medial compartment, while a 10% increased step length had the opposite effects (all P < 0.05). A forefoot strike pattern significantly lowered TFJ and medial compartment TFJ average loading rates compared with a rear foot strike pattern (both <0.05) but did not change TFJ or medial compartment peak force, force impulse per step, or force impulse per km. The combination of a shorter step length and forefoot strike pattern produced the greatest reduction in peak medial compartment contact force (P < 0.05). Knowledge of these running modification effects may be relevant to the management or prevention of TFJ injury or pathology among runners.  相似文献   

12.
ABSTRACT

We examined the association between footfall pattern and characteristics of lower limb muscle function and compared lower limb muscle function between forefoot and rearfoot runners. Fifteen rearfoot and 16 forefoot runners were evaluated using ultrasonography of the gastrocnemii and tibialis anterior while strike index and heel strike angle quantified footfall pattern. Higher strike index was associated with lower medial gastrocnemius echo intensity (p = 0.05), lower lateral gastrocnemius echo intensity (p = 0.04), smaller tibialis anterior pennation angle (p = 0.05), and longer lateral gastrocnemius fascicle length (p = 0.04). Larger heel strike angle was associated with smaller medial gastrocnemius cross-sectional area (p = 0.04), shorter lateral gastrocnemius fascicle length (p < 0.01), and lower plantar flexion moment (p < 0.01). Larger plantar flexion moment was associated with lesser medial gastrocnemius echo intensity (p = 0.04), lesser lateral gastrocnemius echo intensity (p = 0.03), and greater lateral gastrocnemius fascicle length (p = 0.02). A smaller plantar flexion moment, larger heel strike angle, lower tibialis anterior echo intensity, larger tibialis anterior pennation angle, and smaller lateral gastrocnemius pennation angle were observed in rearfoot compared to forefoot runners (p < 0.05). Lower limb muscle architecture is associated with footfall pattern and ankle mechanics during running.

Abbreviation: EMG: electromyographic; MG: medial gastrocnemius; LG: lateral gastrocnemius; TA: tibialis anterior; EI: echo intensity; CSA: cross-sectional area; PA: pennation angle; FL: fascicle length; FT: fat thickness  相似文献   

13.
Abstract

Introduction: In response to fatigue during an exhaustive treadmill run, forefoot runner’s muscles must adapt to maintain their pace. From a neuromuscular control perspective, certain muscles may not be able to sustain the force to meet the run’s demands; thus, there may be alternative muscle coordination in the lower extremity that allows for continued running for an extended period of time. The aim of this study was to quantify the change in muscle coordination during a prolonged run in forefoot runners.

Methods: Thirteen forefoot runners performed exhaustive treadmill runs (mean duration: 15.4?±?2.2?min). The muscle coordination of seven lower extremity muscles was quantified using a high-resolution time–frequency analysis together with a pattern recognition algorithm.

Results: The mean EMG intensity for the lateral and medial gastrocnemius muscles decreased with the run (p?=?0.02; 0.06). The weight factors of the second principal pattern decrease by 128.01% by the end of run (p?=?0.05, Cohen’s d?=?0.42) representing a relatively greater biceps femoris activation in midstance but smaller midstance rectus femoris, vastus medialis, triceps surae, and tibialis anterior activation.

Discussion: These results suggest that forefoot runners cannot sustain plantar flexor activation throughout an exhaustive run and change their muscle coordination strategy as a compensation. Understanding the underlying compensation mechanisms humans use to cope with fatigue will help to inform training modalities to enhance these late stage muscle activation strategies for athletes with the goal of improving performance and reducing injury.  相似文献   

14.
PurposeThis study examined variation in foot strike types, lower extremity kinematics, and arch height and stiffness among Tarahumara Indians from the Sierra Tarahumara, Mexico.MethodsHigh speed video was used to study the kinematics of 23 individuals, 13 who habitually wear traditional minimal running sandals (huaraches), and 10 who habitually wear modern, conventional running shoes with elevated, cushioned heels and arch support. Measurements of foot shape and arch stiffness were taken on these individuals plus an additional sample of 12 individuals.ResultsMinimally shod Tarahumara exhibit much variation with 40% primarily using midfoot strikes, 30% primarily using forefoot strikes, and 30% primarily using rearfoot strikes. In contrast, 75% of the conventionally shod Tarahumara primarily used rearfoot strikes, and 25% primarily used midfoot strikes. Individuals who used forefoot or midfoot strikes landed with significantly more plantarflexed ankles, flexed knees, and flexed hips than runners who used rearfoot strikes. Foot measurements indicate that conventionally shod Tarahumara also have significantly less stiff arches than those wearing minimal shoes.ConclusionThese data reinforce earlier studies that there is variation among foot strike patterns among minimally shod runners, but also support the hypothesis that foot stiffness and important aspects of running form, including foot strike, differ between runners who grow up using minimal versus modern, conventional footwear.  相似文献   

15.
The purpose of this study was to investigate the relationship between Achilles tendon properties and foot strike patterns in long-distance runners. Forty-one highly trained male long-distance runners participated in this study. Elongation of the Achilles tendon and aponeurosis of the medial gastrocnemius muscle were measured using ultrasonography, while the participants performed ramp isometric plantar flexion up to the voluntary maximum. The relationship between the estimated muscle force and tendon elongation during the ascending phase was fit to a linear regression, the slope of which was defined as stiffness. In addition, the cross-sectional area of the Achilles tendon was measured using ultrasonography. Foot strike patterns (forefoot, midfoot and rearfoot) during running were determined at submaximal velocity (18 km · h?1) on a treadmill. The number of each foot strike runner was 12 for the forefoot (29.3%), 12 for the midfoot (29.3%) and 17 for the rearfoot (41.5%). No significant differences were observed in the variables measured for the Achilles tendon among the three groups. These results suggested that the foot strike pattern during running did not affect the morphological or mechanical properties of the Achilles tendon in long-distance runners.  相似文献   

16.
Abstract

Ethylene vinyl acetate and polyurethane are widely used materials for shoe midsoles. The present study investigated the durability of running shoes made from ethylene vinyl acetate and one type of polyurethane (polyurethane-1), which have similar hardness and density, and another type of polyurethane (polyurethane-2), which has high hardness/density. All shoes differed from one another only in terms of the midsole material used. Eight male runners participated in the present study and used the shoes to run 500 km (10 × 50 km). The cushioning and energy return characteristics of each shoe were measured using an impact tester before and after each 50-km run. The results showed that as the running distance increased, the peak force of midsole materials changed with different patterns. Ethylene vinyl acetate and polyurethane-1 showed greater cushioning than polyurethane-2 over 500 km (ethylene vinyl acetate, 918.2–968.0 N; polyurethane-1, 909.6–972.9 N; polyurethane-2, 983.0–1105.6 N). Polyurethane-1 showed greater cushioning from 200 km to 300 km compared with 0 km (0 km, 972.9 ± 66.3 N; 200 km, 909.6 ± 61.2 N; 250 km, 921.9 ± 51.2 N; 300 km, 924.6 ± 51.9 N). The cushioning of ethylene vinyl acetate shoes was diminished after 500 km compared with that at 0 km (968.0 ± 25.9 N vs. 921.1 ± 20.1 N). Ethylene vinyl acetate resulted in greater energy returns than polyurethane. Both foam category and hardness/density affected the critical biomechanical properties of running shoes.  相似文献   

17.
ABSTRACT

Ultra-cushioning (ULTRA) shoes are new to the running shoe market. Several studies have evaluated kinematics and kinetics while running in ULTRA shoes, however it remains unknown how such shoes influence joint coordination. Therefore, the purpose of this study was to evaluate lower extremity coordination and coordination variability when running in minimalist (MIN), traditional (NEUT) and ULTRA shoes. Fifteen runners ran for ten minutes in each shoe type. Coordination patterns and coordination variability were assessed for rearfoot-tibia, rearfoot-knee, and tibia-knee couplings using a modified vector coding method during early, mid, and late stance periods. During late stance ULTRA shoes resulted in more antiphase coordination than MIN (p =.036) or NEUT (p =.047) shoes and less in-phase coordination than MIN (p =.048) or NEUT (p =.013) shoes. During late stance there was also more proximal phase rearfoot-knee coordination in ULTRA shoes than in either MIN (p =.039) or NEUT (p =.005) shoes and less in-phase coordination in ULTRA shoes than in NEUT shoes (p =.006). There were no differences in coordination variability between shoes during any phase. The differences in coordination may have implications for tissue loading and injury development when running in ULTRA shoes..  相似文献   

18.
The purpose of this study was to determine whether there are differences in the perceived comfort, plantar pressure, and rearfoot motion between laced running shoes and elastic-covered running shoes. Fifteen male amateur runners participated in the study. Each participant was assigned laced running shoes and elastic-covered running shoes for use during the study. The perceived comfort, plantar loading, and rearfoot motion control of each type of shoes during running were recorded. When the laced running shoes and elastic-covered running shoes were compared, the elastic-covered running shoes were given a lower perceived comfort rating in terms of shoe length, width, heel cup fitting, and forefoot cushioning. The elastic-covered running shoes also recorded higher peak plantar pressure in the lateral side of the forefoot, as well as larger maximum rearfoot pronation. Overall, shoelaces can help runners obtain better foot-shoe fit. They increase the perceived comfort, and decrease the maximum pronation and plantar pressure. Moreover, shoelaces may help prevent injury in running by allowing better control of the aforementioned factors.  相似文献   

19.
This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.  相似文献   

20.
The purpose of this study was to investigate possible footfall pattern changes in habitual forefoot runners over a prolonged, exhaustive run. A prolonged run was performed to exhaustion in 14 habitual forefoot runners. Vertical ground reaction forces (VGRFs) and kinematics were collected at the beginning and end of the run. Ankle plantar flexor torque and triceps surae electromyographic activity were measured during pre- and post-run isometric contractions. By run’s end, there was an increase in VGRF loading rate and impact peak magnitude, greater dorsiflexion at foot contact and greater knee flexion angle throughout stance. Ankle plantar flexor torque decreased significantly from pre- to post-run tests. This was accompanied by a decrease in the integrated electromyographic activity (iEMG) output for the lateral and medial gastrocnemius. There were significant changes in landing mechanics for forefoot runners that indicate a transition towards more midfoot footfall patterns. A contributing factor may be ankle plantar flexor muscle fatigue that, at touchdown, is exposed to exaggerated eccentric loading. These findings suggest that a forefoot running pattern may become difficult to maintain in longer endurance events, and thus runners should pay attention to this in training to improve performance and mitigate potential injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号