首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Over the course of last two decades, surface plasmon resonance (SPR) has emerged as a viable candidate for label-free detection and characterization for a large pool of biological interactions, ranging from hybridization of oligonucleotides to high throughput drug-screening. Conventional SPR bio-sensing involves a step-response method where the SPR sensorgram in response to a switched sequential flow of analyte and buffer is plotted in real-time and fitted to an exponential curve to extract the associative and dissociative reaction rates. Such measurement schemes involve continuous flow conditions where a substantial reagent volume is consumed and is subject to dispersive mixing at flow switching zones. In this paper, we demonstrate a new plug-train SPR technique in a microfluidic chip that separates and singulates solvent plugs in analyte and buffer by an immiscible air phase. Bio-samples are first discretized within plug droplets with volumes in order of few hundred nanoliters or less followed by pressure-driven transport onto SPR sensing sites of this hydrophobically modified SPR microdevise. The kinetic constants ka and kd for a model protein-small molecule interaction pair are extracted from a plug-train signal and are shown to be in reasonable agreement with our previous reports.  相似文献   

2.
We present numerical simulations of DNA-chip hybridization, both in the “static” and “dynamical” cases. In the static case, transport of free targets is limited by molecular diffusion; in the dynamical case, an efficient mixing is achieved by chaotic advection, with a periodic protocol using pumps in a rectangular chamber. This protocol has been shown to achieve rapid and homogeneous mixing. We suppose in our model that all free targets are identical; the chip has different spots on which the probes are fixed, also all identical, and complementary to the targets. The reaction model is an infinite sink potential of width dh, i.e., a target is captured as soon as it comes close enough to a probe, at a distance lower than dh. Our results prove that mixing with chaotic advection enables much more rapid hybridization than the static case. We show and explain why the potential width dh does not play an important role in the final results, and we discuss the role of molecular diffusion. We also recover realistic reaction rates in the static case.  相似文献   

3.
The interactions between fluid and sediment in the swash zone dominate the erosion or accretion of the beach, and they act as boundary conditions for nearshore hydrodynamic and morphodynamic models. Thus, the evaluation of sediment transport is of particular importance for many coastal processes and the design of coastal structures. In this paper, unlike conventional approaches, Fuzzy Inference System (FIS) and Adaptive-Network-Based Fuzzy Inference System (ANFIS) methods are used for the prediction and simulation of cross-shore sediment transport in the swash zone. The ANFIS and FIS are established using the free stream velocity time series, Shields parameter and antecedent cross-shore sediment transport of the available swash experimental data. Statistical measures were used to evaluate the performance of the models. Numerical experiments showed that the neuro-fuzzy approach provided satisfactory predictions in sediment transport modeling without incorporating different multipliers for uprush and backwash. Furthermore, the numerical results revealed that the ANFIS-based predictions are slightly superior to the FIS-based predictions.  相似文献   

4.
Ordinary and thermal diffusion of moisture in activated alumina are investigated using a new diffusion cell design and scheme of analysis reported earlier. The specific form of the mass flux equation has a pronounced effect on the magnitude of the associated thermal diffusion ratio. In the case of activated alumina-moist air, if a partial pressure gradient is used, then the thermal diffusion term is small if not zero.Free, Knudsen and surface diffusion all play a part in the diffusion through activated alumina. However, surface diffusion makes the major contribution and for this reason the model in this case can be simplified to a two parameter surface model.The activation energy for surface diffusion is constant and is approximately equal to the mean isosteric heat of absorption. In addition, mean pore radius, turtuosity, and other physical constants are computed from the least square fit of experimental data. Furthermore, the model is theoretically consistent over the entire concentration range (0≦ CACAsat).A new fact about activated alumina (Grade F1) it that it does not transfer moisture in a nonisothermal condition so long as the partial pressures of moisture on the two sides of the pellet are the same. There appears to be no previous report of this fact in the periodical literature.  相似文献   

5.
Droplet-based microfluidics has gained extensive research interest as it overcomes several challenges confronted by conventional single-phase microfluidics. The mixing performance inside droplets/slugs is critical in many applications such as advanced material syntheses and in situ kinetic measurements. In order to understand the effects of operating conditions on the mixing performance inside liquid slugs generated by a microfluidic T-junction, we have adopted the volume of fluid method coupled with the species transport model to study and quantify the mixing efficiencies inside slugs. Our simulation results demonstrate that an efficient mixing process is achieved by the intimate collaboration of the twirling effect and the recirculating flow. Only if the reagents are distributed transversely by the twirling effect, the recirculating flow can bring in convection mechanism thus facilitating mixing. By comparing the mixing performance inside slugs at various operating conditions, we find that slug size plays the key role in influencing the mixing performance as it determines the amount of fluid to be distributed by the twirling effect. For the cases where short slugs are generated, the mixing process is governed by the fast convection mechanism because the twirling effect can distribute the fluid to the flow path of the recirculating flow effectively. For cases with long slugs, the mixing process is dominated by the slow diffusion mechanism since the twirling effect is insufficient to distribute the large amount of fluid. In addition, our results show that increasing the operating velocity has limited effects on improving the mixing performance. This study provides the insight of the mixing process and may benefit the design and operations of droplet-based microfluidics.  相似文献   

6.
7.
A technique for visualizing and quantifying reactive mixing for laminar and turbulent flow in a microscale chemical reactor using confocal-based microscopic laser induced fluorescence (confocal μ-LIF) was demonstrated in a microscale multi-inlet vortex nanoprecipitation reactor. Unlike passive scalar μ-LIF, the reactive μ-LIF technique is able to visualize and quantify micromixing effects. The confocal imaging results indicated that the flow in the reactor was laminar and steady for inlet Reynolds numbers of 10, 53, and 93. Mixing and reaction were incomplete at each of these Reynolds numbers. The results also suggested that although mixing by diffusion was enhanced near the midplane of the reactor at Rej = 53 and 93 due to very thin bands of acidic and basic fluid forming as the fluid spiraled towards the center of the reactor, near the top, and bottom walls of the reactor, the lower velocities due to fluid friction with the walls hindered the formation of these thin bands, and, thus, resulted in large regions of unmixed and unreacted fluid. At Rej = 240, the flow was turbulent and unsteady. The mixing and reaction processes were still found to be incomplete even at this highest Reynolds number. At the reactor midplane, the flow images at Rej = 240 showed unmixed base fluid near the center of the reactor, suggesting that just as in the Rej = 53 and 93 cases, lower velocities near the top and bottom walls of the reactor hinder the mixing and rection of the acidic and basic streams. Ensemble averages of line-scan profiles for the Rej = 240 were then calculated to provide statistical quantification of the microscale mixing in the reactor. These results further demonstrate that even at this highest Reynolds number investigated, mixing and reaction are incomplete. Visualization and quantification of micromixing using this reactive μ-LIF technique can prove useful in the validation of computational fluid dynamics models of micromixing within microscale chemical reactors.  相似文献   

8.
Alternating-current (AC) electrokinetics involve the movement and behaviors of particles or cells. Many applications, including dielectrophoretic manipulations, are dependent upon charge interactions between the cell or particle and the surrounding medium. Medium concentrations are traditionally treated as spatially uniform in both theoretical models and experiments. Human red blood cells (RBCs) are observed to crenate, or shrink due to changing osmotic pressure, over 10 min experiments in non-uniform AC electric fields. Cell crenation magnitude is examined as functions of frequency from 250 kHz to 1 MHz and potential from 10 Vpp to 17.5 Vpp over a 100 μm perpendicular electrode gap. Experimental results show higher peak to peak potential and lower frequency lead to greater cell volume crenation up to a maximum volume loss of 20%. A series of experiments are conducted to elucidate the physical mechanisms behind the red blood cell crenation. Non-uniform and uniform electrode systems as well as high and low ion concentration experiments are compared and illustrate that AC electroporation, system temperature, rapid temperature changes, medium pH, electrode reactions, and convection do not account for the crenation behaviors observed. AC electroosmotic was found to be negligible at these conditions and AC electrothermal fluid flows were found to reduce RBC crenation behaviors. These cell deformations were attributed to medium hypertonicity induced by ion concentration gradients in the spatially nonuniform AC electric fields.  相似文献   

9.
In this paper, thermal mixing characteristics of two miscible fluids in a T-shaped microchannel are investigated theoretically, experimentally, and numerically. Thermal mixing processes in a T-shaped microchannel are divided into two zones, consisting of a T-junction and a mixing channel. An analytical two-dimensional model was first built to describe the heat transfer processes in the mixing channel. In the experiments, de-ionized water was employed as the working fluid. Laser induced fluorescence method was used to measure the fluid temperature field in the microchannel. Different combinations of flow rate ratios were studied to investigate the thermal mixing characteristics in the microchannel. At the T-junction, thermal diffusion is found to be dominant in this area due to the striation in the temperature contours. In the mixing channel, heat transfer processes are found to be controlled by thermal diffusion and convection. Measured temperature profiles at the T-junction and mixing channel are compared with analytical model and numerical simulation, respectively.  相似文献   

10.
A numerical modeling of natural convection under the influence of either axial (Bz) or radial (Br) magnetic field in a cylindrical configuration filled with a low-Prandtl number electrically conducting fluid, is studied. The finite volume method is used to discretize the equations of continuity, Navier Stokes and energy. A computer program based on the SIMPLER algorithm is developed. The flow and temperature fields are presented by stream function and isotherms, respectively. Stability diagrams are established according to the numerical results of this investigation. These diagrams put in evidence the dependence of the critical Grashof number, Grcr with the increase of the Hartmann number, Ha. The strongest stabilization of the convective flows occurs when the magnetic field is applied in the radial direction. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a radial magnetic field.  相似文献   

11.
A complete theory of diffusion of absorbing gases in porous solids is developed. Both ordinary and thermal diffusion are considered. The thermodynamics of irreversible processes is used to derive the general flux equations.A new theoretical model of surface diffusion is presented. Moreover, the proper method of combining surface and gas-phase fluxes is established. The total flux in the pores is represented by a 5 parameter model, which includes the effects of (1) free (gaseous) diffusion, (2) Knudsen diffusion, and (3) surface diffusion.The design of a new diffusion cell is presented along with a stagewise method for analyzing results. The cell is unique in that specimens mounted in copper clad circuit board material permits nonisothermal as well as isothermal operation. Earlier designs were confined to isothermal operation due to mounting specimens in metallic materials such as brass and aluminum.  相似文献   

12.
Liu Y  Hartono D  Lim KM 《Biomicrofluidics》2012,6(1):12802-1280214
This paper presents a two-stream microfluidic system for transporting cells or micro-sized particles from one fluid stream to another by acoustophoresis. The two fluid streams, one being the original suspension and the other being the destination fluid, flow parallel to each other in a microchannel. Using a half-wave acoustic standing wave across the channel width, cells or particles with positive acoustic contrast factors are moved to the destination fluid where the pressure nodal line lies. By controlling the relative flow rate of the two fluid streams, the pressure nodal line can be maintained at a specific offset from the fluid interface within the destination fluid. Using this transportation method, particles or cells of different sizes and mechanical properties can be separated. The cells experiencing a larger acoustic radiation force are separated and transported from the original suspension to the destination fluid stream. The other particles or cells experiencing a smaller acoustic radiation force continue flowing in the original solution. Experiments were conducted to demonstrate the effective separation of polystyrene microbeads of different sizes (3 μm and 10 μm) and waterborne parasites (Giardia lamblia and Cryptosporidium parvum). Diffusion occurs between the two miscible fluids, but it was found to have little effects on the transport and separation process, even when the two fluids have different density and speed of sound.  相似文献   

13.
The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber.  相似文献   

14.
Classical work on transport in heterogeneous media is reviewed to show the broad interest in it as well as the specific need for a thorough treatment of a more comprehensive model. Such a model is presented and it consists of a random distribution of one or more dispersed phases in a continuous phase. Both the stab and spherical geometry are also considered. Both the transient and steady state transport solutions are developed for each of three different cases. The equivalent diffusivities are extracted from the steady state solutions. Applications are considered to illustrate the validity of the work. It is emphasized that the flux Ji for phase i can be complex as discussed elsewhere in the literature and all of this without any detraction from the exposition presented. It is also pointed out that this exposition is apparently the first to establish the connection between a realistic model, its transient solutions and its steady state solutions from which the equivalent diffusivities have been extracted. In the case of dead-end pores the results suggest application to experimental data to serve as a precision test for the presence and amount of dead-end pores. The advantages of testing under steady state conditions are discussed in detail. An appropriate diffusion cell design is referenced. The results can be useful in the research and design of barrier materials, catalysts, etc.  相似文献   

15.
北京时间2016年4月6日1时38分04秒,酒泉卫星发射中心,"长征"二号丁运载火箭成功发射,在559秒后将中国科学卫星系列第二颗星——"实践十号"返回式科学实验卫星送入高度约250 km的圆轨道,卫星发射取得圆满成功。"实践十号"卫星在太空运行15天,装载着19项科学设施,共28项实验。实验内容涉及微重力流体物理、微重力燃烧、空间材料科学、空间辐射生物效应、重力生物学效应和空间生物技术6大方向。卫星的返回舱装载着全部9项生物学设备以及空间材料科学多功位炉和流体物理中的输运系数测量装置;而留轨舱中装载着其他8项微重力科学设施。  相似文献   

16.
This research reports an improved conjugation process for immobilization of antibodies on carboxyl ended self-assembled monolayers (SAMs). The kinetics of antibody/SAM binding in microfluidic heterogeneous immunoassays has been studied through numerical simulation and experiments. Through numerical simulations, the mass transport of reacting species, namely, antibodies and crosslinking reagent, is related to the available surface concentration of carboxyl ended SAMs in a microchannel. In the bulk flow, the mass transport equation (diffusion and convection) is coupled to the surface reaction between the antibodies and SAM. The model developed is employed to study the effect of the flow rate, conjugating reagents concentration, and height of the microchannel. Dimensionless groups, such as the Damköhler number, are used to compare the reaction and fluidic phenomena present and justify the kinetic trends observed. Based on the model predictions, the conventional conjugation protocol is modified to increase the yield of conjugation reaction. A quartz crystal microbalance device is implemented to examine the resulting surface density of antibodies. As a result, an increase in surface density from 321 ng/cm2, in the conventional protocol, to 617 ng/cm2 in the modified protocol is observed, which is quite promising for (bio-) sensing applications.Microfluidics have been implemented in various bio-medical diagnostic applications, such as immunosensors and molecular diagnostic devices.1 In the last decade, a vast number of biochemical species has been detected by microfluidic-based immunosensors. Immunosensors are sensitive transducers which translate the antibody-antigen reaction to physical signals. The detection in an immunosensor is performed through immobilization of an antibody that is specific to the analyte of interest.2 The antibody is often bound to the transducing surface of the sensor covered by self-assembled monolayers (SAMs). SAMs are organic materials that form a thin, packed and robust interface on the surface of noble metals like that of gold, suitable for biosensing applications.3 Thiolic SAMs have a “head” group that shows a high affinity to being chemisorbed onto a substrate, typically gold. The SAMs'' carboxylic functional group of the “tail” end can be linked to an amine terminal of an antibody to form a SAM/antibody conjugation.3,4 The conjugation process is usually accomplished in the presence of carbodiimides, such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). A yield increasing additive, N-Hydroxysuccinimide (NHS), is often used to enhance the surface loading density of the antibody.4,5A typical reaction for coupling the carboxylic acid groups of SAMs with the amine residue of antibodies in the presence of EDC/NHS is depicted in Figure Figure11.4 NHS promotes the generation of an active NHS ester (k2 reaction path). The NHS ester is capable of efficient acylation of amines, including antibodies (k3 reaction path). As a result, the amide bond formation reaction, which typically does not progress efficiently, can be enhanced using NHS as a catalyst.4Open in a separate windowFIG. 1.NHS catalyzed conjugation of antibodies to carboxylic-acid ended SAMs through EDC mediation (Adapted from G. T. Hermanson, Bioconjugate Techniques, 2nd. Edition. Copyright 2008 by Elsevier4). EDC reacts with the carboxylic acid and forms o-acylisourea, a highly reactive chemical that reacts with NHS and forms an NHS ester, which quickly reacts with an amine (i.e., antibody) to form an amide.A number of groups have studied EDC/NHS mediated conjugation reactions such as the ones depicted in Figure Figure1.1. The general stoichiometry of the reaction involves a carboxylic acid (SAM), an amine (antibody), and EDC to produce the final amide (antibody conjugated SAM) and urea. However, the recommended concentration ratio of the crosslinking reagents inside the buffer, i.e., the ratio of EDC and NHS with respect to adsorbates and each other, varies from one study to another.6 The kinetics of the reactions outlined in Figure Figure11 have also been investigated,4,6–8 but only in the absence of NHS for EDC or carboxylic acids in aqueous solutions.8 A relatively recent experimental study verified the catalytic role of the yield-increasing reagent N-hydroxybenzotriazole (HOBt), which acts similarly to NHS.7 In this study, the amide formation rate (k3 reaction path, Figure Figure1)1) was found to be dependent on the concentration of the carboxylic acid and EDC in the buffer solution, and independent of the amine and catalyst reagent concentration. The same group also showed that the amide bond formation kinetics is controlled by the reaction between the carboxylic acid and the EDC to give the O-acylisourea, which they marked as the rate-determining step (k1 reaction path, Figure Figure11).The k1 reaction path, or the conjugation reaction, is usually a lengthy process and takes between 1 and 3 h.4,9 Compared to k1, the k2 and ?k3 reactions are considerably faster. Microfluidics has the potential to enhance the kinetics of these reactions using the flow-through mode.10,11 This improvement occurs because while conventional methods rely only on diffusion as the primary reagent transport mode, microfluidics adds convection to better replenish the reagents to the reaction surfaces. However, there are many fundamental fluidic and geometrical parameters that might affect the process time and reagents consumption in a microfluidics environment, such as concentration of antibodies and reagents, flow rate, channel height, and final surface density of antibodies. A model that studies the kinetics of conjugation reaction against all these parameters would therefore be helpful for the optimization of this enhanced kinetics.There are a number of reports on numerical examination of the kinetics of binding reactions in microfluidic immunoassays.12–15 All these models developed so far couple the transport of reagents, by diffusion and convection, to the binding on the reaction surface. Myszka''s model assumes a spatially homogeneous constant concentration of reagents throughout the reaction chamber, thus fails to describe highly transport-limited conditions due to the presence of spatial heterogeneity and depletion of the bulk fluid from reagents.16,17 In transport-limited conditions, the strength of reaction is superior to the rate of transport of reagents to the reaction surface.18,19 More recently, the convection effects were included in a number of studies, describing the whole kinetic spectrum from reaction-limited conditions to transport-limited reactions.20–22 Immunoreaction kinetics has also been examined with a variety of fluid driving forces, from capillary-driven flows,20 to electrokinetic flows in micro-reaction patches,21 pressure-driven flows in a variety of geometric designs.22 Despite these comprehensive numerical investigations, the fundamental interrelations between the constitutive kinetic parameters, such as concentration, flow velocity, microchannel height, and antibody loading density, have not been studied in detail. In addition, the conjugation kinetics has not yet been exclusively examined.In this paper, a previous model for immunoreaction is modified to study the antibody/SAM conjugation reaction in a microfluidic system. Model findings are used to examine the process times recommended in the literature and possible modification scenarios are proposed. The new model connects the convective and diffusive transport of reagents in the bulk fluid to their surface reaction. The conjugation reaction is studied against fluidic and geometrical parameters such as flow rate, concentration, microchannel height and surface density of antibodies. Damköhler number is used to compare the reaction and fluidic phenomena present and justify the kinetic trends observed. Model predictions are discussed and the main finding on possible overexposure of carboxylates to crosslinking reagents, in conventional protocols, is verified by comparing the resultant antibody loading densities obtained using a quartz crystal microbalance (QCM) set up. The results demonstrate an improved receptor (antibody) loading density which is quite promising for a number of (bio-) sensing applications.23,24 Major application areas include antibody-based sensors for on-site, rapid, and sensitive analysis of pathogens such as Bacillus anthracis,23 Escherichia coli, and Listeria monocytogenes, and toxins such as fungal pathogens, viruses, mycotoxins, marine toxins, and parasites.24  相似文献   

17.
The way in which bacterial communities colonize flow in porous media is of importance, but basic knowledge on the dynamic of these phenomena is still missing. The aim of this work is to develop microfluidic experiments in order to progress in the understanding of bacteria capture in filters and membranes. PDMS microfluidic devices mimicking filtration processes have been developed to allow a direct dynamic observation of bacteria across 10 or 20 μm width microchannels. When filtered in such devices, bacteria behave surprisingly: Escherichia coli, Pseudomonas aeruginosa or Staphylococcus aureus accumulate in the downstream zone of the filter and form large streamers which oscillate in the flow. In this study, streamer formation is put in evidence for bacteria suspension in non nutritive conditions in less than 1 h. This result is totally different from the one observed in same system with “inert” particles or dead bacteria which are captured in the bottleneck zone and are accumulated in the upstream zone. Observations within different flow geometries (straight channels, connected channels, and staggered row pillars) show that the bacteria streamer development is influenced by the flow configuration and, particularly by the presence of tortuosity within the microchannels zone. These results are discussed at the light of 3D flow simulations. In confined systems and in laminar flow, there is secondary flow (z-velocities) superimposed to the streamwise motion (in xy plane). The presence of the secondary flow in the microsystems has an effect on the bacterial adhesion. A scenario in three steps is established to describe the formation of the streamers and to explain the positive effect of tortuous flow on the development kinetics.  相似文献   

18.
Rechargeable magnesium batteries have received extensive attention as the Mg anodes possess twice the volumetric capacity of their lithium counterparts and are dendrite-free. However, Mg anodes suffer from surface passivation film in most glyme-based conventional electrolytes, leading to irreversible plating/stripping behavior of Mg. Here we report a facile and safe method to obtain a modified Mg metal anode with a Sn-based artificial layer via ion-exchange and alloying reactions. In the artificial coating layer, Mg2Sn alloy composites offer a channel for fast ion transport and insulating MgCl2/SnCl2 bestows the necessary potential gradient to prevent deposition on the surface. Significant improved ion conductivity of the solid electrolyte interfaces and decreased overpotential of Mg symmetric cells in Mg(TFSI)2/DME electrolyte are obtained. The coated Mg anodes can sustain a stable plating/stripping process over 4000 cycles at a high current density of 6 mA cm−2. This finding provides an avenue to facilitate fast ion diffusion kinetics of Mg metal anodes in conventional electrolytes.  相似文献   

19.
The majority of cancer deaths are linked to tumor spread, or metastasis, but 3D in vitro metastasis models relevant to the tumor microenvironment (including interstitial fluid flow) remain an area of unmet need. Microfluidics allows us to introduce controlled flow to an in vitro cancer model to better understand the relationship between flow and metastasis. Here, we report new hybrid spheroid-on-chip in vitro models for the impact of interstitial fluid flow on cancer spread. We designed a series of reusable glass microfluidic devices to contain one spheroid in a microwell under continuous perfusion culture. Spheroids derived from established cancer cell lines were perfused with complete media at a flow rate relevant to tumor interstitial fluid flow. Spheroid viability and migratory/invasive capabilities were maintained on-chip when compared to off-chip static conditions. Importantly, using flow conditions modeled in vitro, we are the first to report flow-induced secretion of pro-metastatic factors, in this case cytokines vascular endothelial growth factor and interleukin 6. In summary, we have developed a new, streamlined spheroid-on-chip in vitro model that represents a feasible in vitro alternative to conventional murine in vivo metastasis assays, including complex tumor environmental factors, such as interstitial fluid flow, extracellular matrices, and using 3D models to model nutrient and oxygen gradients. Our device, therefore, constitutes a robust alternative to in vivo early-metastasis models for determination of novel metastasis biomarkers as well as evaluation of therapeutically relevant molecular targets not possible in in vivo murine models.  相似文献   

20.
Microfluidic devices have been established as useful platforms for cell culture for a broad range of applications, but challenges associated with controlling gradients of oxygen and other soluble factors and hemodynamic shear forces in small, confined channels have emerged. For instance, simple microfluidic constructs comprising a single cell culture compartment in a dynamic flow condition must handle tradeoffs between sustaining oxygen delivery and limiting hemodynamic shear forces imparted to the cells. These tradeoffs present significant difficulties in the culture of mesenchymal stem cells (MSCs), where shear is known to regulate signaling, proliferation, and expression. Several approaches designed to shield cells in microfluidic devices from excessive shear while maintaining sufficient oxygen concentrations and transport have been reported. Here we present the relationship between oxygen transport and shear in a "membrane bilayer" microfluidic device, in which soluble factors are delivered to a cell population by means of flow through a proximate channel separated from the culture channel by a membrane. We present an analytical model that describes the characteristics of this device and its ability to independently modulate oxygen delivery and hemodynamic shear imparted to the cultured cells. This bilayer configuration provides a more uniform oxygen concentration profile that is possible in a single-channel system, and it enables independent tuning of oxygen transport and shear parameters to meet requirements for MSCs and other cells known to be sensitive to hemodynamic shear stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号