首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
下面这道习题是大家熟悉的,并且是不难证明的:在本文中,我们将从上述条件出发,导出两个三角递推式,并说明其应用.定理设并规定证对任意n≥3,易验证下式成立将上式代入(5)式得在(6)式中令n=3,并由F(0)=3、F(1)=0得同法可证(4)成立.以下举例说明(3),(4)式的应用因此,由(3)式,得成等比数列.及例1的结果知由(3)式得成等比数列则对任意正整数n,有证用数学归纳法l)由于所以,不等式(7)对成立;再由三倍角公式,得故不等式(9)对n=3也成立.2)假设不等式(7)对n≤k(K≥3)成立,则当n=k 1时,由(3)式…  相似文献   

2.
本刊94年第1期《也谈一个不等式的加强》一文(下称文[1]),用数学归纳法证得如下命题设n∈N,n≥2,则当且仅当n=2时,等号成立.本文用数列不等式对下限不等式作进一步加强,对上限不等式作进一步弱化,得出一系列新的不等式.定理设n∈N,n≥2,则当且仅当n=2时,等号成立.证构造数列{xn},这里上是增函数.故x_(n l)<x_n即{x_n}是单调递减数列.当且仅当n=2时,等号成立.构造数列{y_n},这里故y_(n 1)>y_n{y_n}是单调递增数列.即y_(n 1)≥y_n≥y_(n-1)≥…≥y_3≥y_2.n=2时,等号成立.当且仅当n=2时,等号成立.当取b=3/5,或b=…  相似文献   

3.
数学归纳法是证明与正整数有关命题的一种重要方法,其步骤为:(1)证明当n取第一个值n0时结论正确;(2)假设当n=k(k∈N^*,且k≥n0)时结论正确。证明当n=k+1时结论也正确.在完成了这两个步骤以后。就可以断定命题从n0开始的所有正整数”都成立.  相似文献   

4.
应用数学归纳法证明的一般过程是:(1)证明当n取第一个值n。时,命题成立;(2)假设当n=k(k∈N,k≥n0)时,命题成立,证明当n=k+1时命题也成立;(3)根据(1)和(2),当n≥n0且n∈N时,命题成立.  相似文献   

5.
秦振 《高中生》2010,(4):26-27
数学归纳法就是:一个与自然数有关的命题,如果当凡取第一个值n0时命题成立,在假设当n=k(k∈N^*,k南≥n0)时命题成立的前提下,推出当n=k+1时命题也成立,那么我们可以断定这个命题对n取第一个值后面的所有正整数都成立.数学归纳法的适用范围仅限于与自然数有关的命题.  相似文献   

6.
证明与正整数有关的命题时,常用数学归纳法,用数学归纳法证明的步骤是:(1)证明当n取第一个值n_0(n_0是满足命题的最小正整数)时,命题成立.(2)假设当n=k(k≥n_0,k∈N~*)时命题成立,证明当n=k+1时命题也成立.(3)由(1)(2)可知,命题对于从n_0开始的所有的正整数都成立.  相似文献   

7.
普通高中课程标准化实验教科书选修2—2(苏教版)第85页数学归纳法出现: 如果(1)当n取第一个值n0(例如n0=1,2等)时结论正确;(2)假设n=k(k∈N*,且k≥n0)时结论正确,证明n=k+1时结论也正确,那么,命题对于从n0开始的所有正整数n都成立.  相似文献   

8.
问题1 在数列{an}中,an=n^2-kn.若对任意的正整数n,an≥a3都成立,求实数k的取值范围. 问题2 不等式n^2+pn+q≥0对任意正整数n恒成立的充要条件是什么?(常数p,q∈R)  相似文献   

9.
数学归纳法是一种重要的数学方法,运用数学归纳法证题的步骤是:(1)证明当n取第一个值n0(n0≥1)时,命题成立;(2)假设n=k(k∈N*且k≥n0)时命题成立,从而推出当n=k+1时,命题也成立.根据(1)、(2)可知,对一切n∈N*(n≥n0)命题成立.数学归纳法的第一步是验证命题的基础,第二步是论证命题的依据(传递性成立),两个步骤密切相关,缺一不可.需要注意的是:步骤(1)一般选取命题中最小的正整数n0作为起始值进行验证;步骤(2)推证当n=k+1时命题成立的前题,必须是当n=k时命题成立这个归纳假设,否则推理无效.作差法若命题中有关于n的连加式或数列的前n项和,则…  相似文献   

10.
用数学归纳法证明与正整数有关的不等式时,常常在“假设n=k时不等式成立”的前提下去推证“当n=k+1时不等式也成立”的过程中思维受阻,成为中学数学教与学的难点.本文拟举例介绍常用的几种处理技巧,供参考.  相似文献   

11.
数学归纳法是一种重要的证明与正整数有关的数学命题的方法.一般先证明当n取第一个值n_0(例如n_0= 1)时命题成立,然后假设当n=k(k∈N~*,k≥n_0)时命题成立,并证明当n=k 1时命题也成立,那么就证明这个命题成立.因为证明了这一点,就可以断定这个命题对于n取第一个值后面的所有正整数也都成立.这种证明方法叫做数学归纳法.  相似文献   

12.
数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是:1°验证:n=1时,命题成立;2°在假设当n=k(k≥1)时命题成立的前提下,推出当n=k+1时,命题成立.根据1°,2°可以判定命题对一切正整数n都成立.数学归纳法的两个步骤("归纳奠基"和"归纳递推")是缺一不可的.使用数学归纳法证明时,只有把两个步骤结  相似文献   

13.
<正>数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法。它的基本步骤是:(1)验证n=n0时,命题成立(归纳奠基);(2)在假设当n=k(k≥n0,k∈N+)时命题成立的前提下,推出当n=k+1时,命题成立(归纳递推)。根据(1)(2)可以断定命题对一切大于等于n0的正整数n都成立。数列问题是与正整数有关的问题,本文就来谈谈数学归纳法在数列中的应用。例1已知正项数列{bn}的前n项和  相似文献   

14.
用数学归纳法证明有关不等式的命题,关键是“一凑一证”,常用比较法、分析综合法、放缩法等方法完成“假设当n=k时命题成立,证明当n=k+1时命题也成立”这一步。以下就此举例予以说明。  相似文献   

15.
高中数学新课程(人教版)模块选修IB不等式选讲中,把数学归纳法作为证明不等式的一种重要方法.用数学归纳法证明时,要完成两个步骤:(1)证明当n取第一个值n0时,结论正确;(2)假设n=k(k∈N,k≥‰)时结论正确,证明当n=k+1时,结论也正确,即由命题P(k)正确推出命题p(k+1)正确,  相似文献   

16.
问题设a1,a2,a3,…,an都是正数,且a1a2a3…an=1.试用数学归纳法证明:a1 a2 a3 … an≥n.错证(1)当n=1时,a1=1,结论显然成立.(2)假设n=k时,结论成立,即a1a2a3…ak=1时,a1 a2 a3 … ak≥k成立.当n=k 1时,a1 a2 a3 … ak ak 1≥k ak 1,而a1a2a3…akak 1=1,所以ak 1=1,从而a1 a2 a3 … ak ak 1≥k 1.这就是说,当n=k 1时,结论仍成立.由(1)(2)可知,对任意的n∈N*,结论成立.剖析在归纳假设中,由a1a2a3…ak=1(其中ai>0,i=1,2,…,k),则有a1 a2 a3 … ak≥k成立,其实质是若k个正数的积是1,则这k个正数的和不小于k.在递推中,当n=k 1时,有a1a2a3…akak …  相似文献   

17.
近年来,在会考、高考和数学竞赛中,有关数学归纳法的题目屡见不鲜,且尤其以证明不等式的问题为著.究其原因,一是数学归纳法本身应用的广泛性,二是不等式证明的灵活性和综合性.它既需要学生对数学归纳法应用程式的深刻理解,又需要学生对不等式证明的各种技巧的灵活运用.为此,本文举例说明数学归纳法证明不等式的几种常用技巧,供大家参考.1°分析法技巧利用归纳假设完成证明时,由于导出的式子与要证的式子联系不强,可考虑采用分析法来证.例1设a>0,b>0,n∈N.证明证(1)当n=1时,命题显然成立.(2)假设n=k时,命题成立.即由…  相似文献   

18.
在学习过程中,我们遇到求形如(1+2x+3x~2)~5的展开的项数问题,通过分析,我们猜测如下命题。我用已学过的组合性质C_(n+1)~m=C_n~(m-1)+C_n~m及二项式定理证明了这一命题。命题:(sum from i=1 to m a_i)~n(n≥1,m≥1)的展开项数为C_(m+n-1)~n项。证明:我们对自然数m用数学归纳法。①、当m=1、2时,对一切自然数n命题显然成立。②、假设m=k时,对一切自然数n命题成立。当m=k+1时, 据归纳假设,上式右端展开后,其项数分别为:C_k~0项,C_k~1项,C_(k+1)~2项,C_(k+2)~3项,…,C_(k+n-1)~n项。又由于上式右端a_(k+1)的方次不同,它们之间不可能再合并同类项。故有 (sum from i=1 to k+1 a_i)~n展开项数=C_k~0+C_k~1+C_(k+1)~2+C_(k+2)~3  相似文献   

19.
正在高中数学的学习中,数学归纳法常用来证明与正整数有关的命题,这个证明过程我们可以归纳为以下的几个步骤:(1)先证明当n取第一个值n0时,命题成立.这个步骤很简单,学生们都能写出来.(2)假设当n=k(k∈N*,k≥n0)时,命题成立,再证明当n=k+1时命题也成立.这是整个证明过程的核心步骤,涉及到一些变形,相对比较难.最后根据一、二步骤中的内容进行概括归纳,当n≥n0,n∈N*时,命题也成立.  相似文献   

20.
用数学归纳法证明有关不等式的命题,关键是“一凑一证“,常用比较法、分析综合法、放缩法等方法完成“假设当n=k时命题成立,证明当n=k 1时命题也成立“这一步.以下就此举例予以说明.……  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号