首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider a malicious attack issue against remote state estimation in cyber-physical systems. Due to the limited energy, the sensor adopts an acknowledgment-based (ACK-based) online power schedule to improve the remote state estimation. However, the feedback channel will also increase the risk of being attacked. The malicious attacker has the ability to intercept the ACK information and modify the ACK signals (ACKs) from the remote estimator. It could induce the sensor to make poor decisions while maintaining the observed data packet acceptance rate to keep the attacker undetected. To maximize the estimation error, the attacker will select appropriate attack times so that the sensor makes bad decisions. The optimal attack strategy based on the true ACKs and the corrosion ACKs is analytically proposed. The optimal attack time to modify the ACKs is the time when the sensor’s tolerance, i.e., the number of consecutive data packet losses allowed, is about to reach the maximum. In addition, such an optimal attack strategy is independent of the system parameters. Numerical simulations are provided to demonstrate the analytical results.  相似文献   

2.
In this paper, networked predictive control is investigated for a networked control system with quantizers by an event-driven strategy. An event generator is designed according to a deviation of state estimation between the current time and last trigger time. A predictive strategy is proposed to compensate effect of network-induced delays and packet dropouts. The quantizers are used to deal with signals by converting real-valued signals into effective ones in both feedback and forward channels. Based on a “zoom” strategy, sufficient conditions are given to ensure stabilization of the networked control system by solving linear matrix inequalities. A simulation example is proposed to exhibit advantages and availability of the developed techniques.  相似文献   

3.
For state estimation of high accuracy, prior knowledge of measurement noise is necessary. In this paper, a method for solving the joint state estimation problem of jump Markov nonlinear systems (JMNSs) without knowing the measurement noise covariance is developed. By using the Inverse-Gamma distribution to describe the dynamics of measurement noise covariance, the joint conditional posterior distribution of the state variable and measurement noise covariance is approximated by a product of separable variational Bayesian (VB) marginals. In the newly constructed approach, the interacting multiple model (IMM) algorithm, as well as the particle-based approximation strategy, is employed to handle the computationally intractable problem and the nonlinear characteristics of systems, respectively. An interesting feature of the proposed method is that the distribution of states is spanned by a set of particles with weights, while the counterpart of measurement noise covariance is obtained analytically. Moreover, the number of particles is fixed under each mode, indicating a reasonable computational cost. Simulation results based on a numerical example and a tunnel diode circuit (TDC) system are presented to demonstrate that the proposed method can estimate the measurement noise covariance well and provide satisfied state estimation when the statistics of the measurement are unavailable.  相似文献   

4.
This paper investigates the control problem for nonlinear networked control systems with global Lipschitz nonlinearities subject to output quantization and data packet dropout. The system states are unavailable and the outputs are quantized in a logarithmic form before transmitted through network. In the communication channel, two types of packet losses are considered simultaneously: (i) packet losses from sensor to controller and (ii) packet losses from controller to actuator, which are modeled as two independent Bernoulli distributed white sequences, respectively. Based on the proposed model, an observer-based controller is designed to exponentially stabilize the networked system in the sense of mean square, and sufficient conditions for the existence of the controller are established. Finally, a numerical example is presented to illustrate the effectiveness and applicability of the proposed technique.  相似文献   

5.
This paper studies the asynchronous state fusion estimation problem for multi-sensor networked systems subject to stochastic data packet dropouts. A set of Bernoulli sequences are adopted to describe the random packet losses with different arriving probabilities for different sensor communication channels. The asynchronous sensors considered in this paper can have arbitrary sampling rates and arbitrary initial sampling instants, and may even sample the system non-uniformly. Asynchronous measurements collected within the fusion interval are transformed to the fusion time instant as a combined equivalent measurement. An optimal asynchronous estimation fusion algorithm is then derived based on the transformed equivalent measurement using the recursive form of linear minimum mean squared error (LMMSE) estimator. Cross-correlations between involved random variables are carefully calculated with the stochastic data packet dropouts taken into account. A numerical target tracking example is provided to illustrate the feasibility and effectiveness of the proposed algorithm.  相似文献   

6.
In this paper, the state estimation problem for discrete-time networked systems with communication constraints and random packet dropouts is considered. The communication constraint is that, at each sampling instant, there is at most one of the various transmission nodes in the networked systems is allowed to access a shared communication channel, and then the received data are transmitted to a remote estimator to perform the estimation task. The channel accessing process of those transmission nodes is determined by a finite-state discrete-time Markov chain, and random packet dropouts in remote data transmission are modeled by a Bernoulli distributed white sequence. Using Bayes’ rule and some results developed in this study, two state estimation algorithms are proposed in the sense of minimum mean-square error. The first algorithm is optimal, which can exactly compute the minimum mean-square error estimate of system state. The second algorithm is a suboptimal algorithm obtained under a lot of Gaussian hypotheses. The proposed suboptimal algorithm is recursive and has time-independent complexity. Computer simulations are carried out to illustrate the performance of the proposed algorithms.  相似文献   

7.
Unpredictable packet loss that occurs in the channel connecting a local sensor and a remote estimator will deteriorate the performance of state estimation. To relieve this detrimental impact, an online linear temporal coding scheme is studied in this paper. If the packet of the last step is lost, a linear combination of the current and the last measurements with proper weights is transmitted; otherwise, only the current data is sent. By virtue of the innovation sequence approach, a linear minimum mean-squared error estimation algorithm is designed. To optimize performance, a novel estimator is also proposed which provides a recursive expression of the error covariances. The proposed two algorithms are proved to be equivalent via a set of transformations. With the aid of some optimization techniques, a recursive algorithm is presented to obtain the optimal coding weight in terms of minimizing the average estimation error covariance.  相似文献   

8.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

9.
This paper studies centralized fusion estimation over a wireless sensor-actuator network, where packet dropouts cannot be observed by the fusion estimator. For such a system, we obtain an optimal linear fused estimation of system states, also known as optimal linear estimator. Then, we establish a necessary and sufficient condition for the stability of the optimal linear estimator. Finally, we show that the estimation performance is monotonically decreasing with respect to the observation packet-arrival rate. By analyzing a sequence that converges to the covariance of the optimal linear estimator, an analytical relationship between the estimation performance and the control packet-arrival rate is obtained. Simulation examples are given to illustrate the main results.  相似文献   

10.
Early time series classification is a variant of the time series classification task, in which a label must be assigned to the incoming time series as quickly as possible without necessarily screening through the whole sequence. It needs to be realized on the algorithmic level by fusing a decision-making method that detects the right moment to stop and a classifier that assigns a class label. The contribution addressed in this paper is twofold. Firstly, we present a new method for finding the best moment to perform an action (terminate/continue). Secondly, we propose a new learning scheme using classifier calibration to estimate classification accuracy. The new approach, called CALIMERA, is formalized as a cost minimization problem. Using two benchmark methodologies for early time series classification, we have shown that the proposed model achieves better results than the current state-of-the-art. Two most serious competitors of CALIMERA are ECONOMY and TEASER. The empirical comparison showed that the new method achieved a higher accuracy than TEASER for 35 out of 45 datasets and it outperformed ECONOMY in 20 out of 34 datasets.  相似文献   

11.
In this paper, an asynchronous sliding mode control design method based on the event-triggered strategy is proposed for the continuous stirred tank reactor (CSTR) under external disturbance. Firstly, with the purpose of appropriately modeling the multi-mode switching phenomenon in the CSTR caused by the fluctuation of temperature and concentration, the Markov process is applied. Secondly, the asynchronous switching characteristics are introduced to describe mismatch between the controller and the system, which caused by some factors such as signal transmission delay and packet dropout. In order to effectively estimate the system states that cannot be measured in real time, an observer based on the event-triggered strategy is proposed, which also can reduce the computational cost. In addition, a sliding mode controller is designed to ensure the dynamic stability and the sliding dynamics is reachable in a finite time. Finally, the effectiveness of the proposed method is verified by simulation experiments.  相似文献   

12.
In this paper, we consider a distributed dynamic state estimation problem for time-varying systems. Based on the distributed maximum a posteriori (MAP) estimation algorithm proposed in our previous study, which studies the linear measurement models of each subsystem, and by weakening the constraint condition as that each time-varying subsystem is observable, this paper proves that the error covariances of state estimation and prediction obtained from the improved algorithm are respectively positive definite and have upper bounds, which verifies the feasibility of this algorithm. We also use new weighting functions and time-varying exponential smoothing method to ensure the robustness and improve the forecast accuracy of the distributed state estimation method. At last, an example is used to demonstrate the effectiveness of the proposed algorithm together with the parameter identification.  相似文献   

13.
In this paper, we investigate the consensus problem for discrete linear multi-agent systems (MASs) with Markovian packet dropouts. Both identical and nonidentical packet dropouts are studied. For the discrete-time MASs under identical packet dropouts, we present the expectation of the total sojourn time of packet dropouts and successful message transmission, the switching number from packet dropouts to successful message transmission, and the awaken number of packet dropouts and successful message transmission. Based on these expectations, a linear consensus controller is designed through analyzing the transient properties of the Markov process such that the MASs can reach consensus almost surely for any initial distribution of packet dropouts. When it comes to the nonidentical packet dropouts where all the packets are independent and stochastic, a Markovian-lossy-channel based switching model (MLCBS model) is proposed. Based on the MLCBS model, we also propose an easy-to-implement linear consensus controller such that the MASs with nonidentical packet dropouts can achieve consensus almost surely. Finally, the theoretical results are illustrated by simulation examples.  相似文献   

14.
In this study, the distributed output consensus control issue is investigated for a class of linear cluster multi-agent systems (CMASs) under the control strategy of the reset observer. We consider a communication network consisting of several clusters, each of which is directed and contains a leader. The interactions among agents include continuous-discrete hybrid communication. Specifically, an instantaneous connectivity only exists between the clusters at discrete moments, called the reset time sequence. At the reset time, an instantaneous fixed directed network is formed such that only the leaders will consider the available information of neighboring leaders to reset their own states. During non-reset intervals, only the intra-clusters are connected while the inter-clusters are equivalent to a disconnected network topology. Considering that in practice, the state information may be partially unavailable, only the relative output information is utilized to estimate the unavailable state and thus control protocols are developed with the help of the reset full-order and reduced-order observers, respectively. The stability of the closed-loop CMAS at both the reset time and non-reset intervals is studied based on Lyapunov analysis. The consensus value depends only on the initial conditions and the network topology involved, and not on the reset time sequence. Finally, numerical simulations are provided to illustrate the theoretical results.  相似文献   

15.
This paper focuses on state estimation issues for networked control systems (NCSs) with both control input and observation packet dropouts over user datagram protocol (UDP) communication channels. For such systems, which are usually known as UDP-like systems, the computation cost of the optimal estimator is too high to afford in practice due to exponential growth of complexity. Although quite a few suboptimal estimators could be alternatives for improving the computational efficiency, yet researches on the stability of suboptimal estimators are rarely reported. Based on the generalized pseudo-Bayesian (GPB) algorithm, an efficient suboptimal algorithm is developed for UDP-like systems. More crucially, a sufficient condition is obtained, which guarantees the stability of its mean estimation error covariance. This stability condition explicitly expresses that the rate of observation packet dropout is a critical factor in determining the stability of the proposed GPB estimator, while the rate of control input packet dropout has no influence on it. The results are illustrated by numerical examples.  相似文献   

16.
罗鹏  刘莉 《科技创业月刊》2007,20(7):106-108
在线品牌,目前国外此类研究方兴未艾,而国内相关研究尚属空白,为了填补国内在线品牌文献回顾的空白,主要探讨了国外在线品牌的研究现状。基于传统离线品牌管理的结构,用文献归纳出在线品牌的特征以及在线品牌独特的沟通机制,提出了在线品牌的战略管理思想。  相似文献   

17.
This paper proposes solutions that reduce the inaccuracy of distributed state estimation and consequent performance deterioration of distributed model predictive control caused by faults and inaccurate models. A distributed state estimation method for large-scale systems is introduced. A local state estimation approach considers the uncertainty of neighbor estimates, which can improve the state estimation accuracy, whereas it keeps a low network communication burden. The method also incorporates the uncertainty of model parameters which improves the performance when using simplified models. The proposed method is extended with multiple models and estimates the probability of nominal and fault behavior models, which creates a distributed fault detection and diagnosis method. An example with application to the building heating control demonstrates that the proposed algorithm provides accurate state estimates to a controller and detects local or global faults while using simplified models.  相似文献   

18.
Zero-shot object classification aims to recognize the object of unseen classes whose supervised data are unavailable in the training stage. Recent zero-shot learning (ZSL) methods usually propose to generate new supervised data for unseen classes by designing various deep generative networks. In this paper, we propose an end-to-end deep generative ZSL approach that trains the data generation module and object classification module jointly, rather than separately as in the majority of existing generation-based ZSL methods. Due to the ZSL assumption that unseen data are unavailable in the training stage, the distribution of generated unseen data will shift to the distribution of seen data, and subsequently causes the projection domain shift problem. Therefore, we further design a novel meta-learning optimization model to improve the proposed generation-based ZSL approach, where the parameters initialization and the parameters update algorithm are meta-learned to assist model convergence. We evaluate the proposed approach on five standard ZSL datasets. The average accuracy increased by the proposed jointly training strategy is 2.7% and 23.0% for the standard ZSL task and generalized ZSL task respectively, and the meta-learning optimization further improves the accuracy by 5.0% and 2.1% on two ZSL tasks respectively. Experimental results demonstrate that the proposed approach has significant superiority in various ZSL tasks.  相似文献   

19.
《Journal of The Franklin Institute》2021,358(18):10052-10078
This paper is concerned with the fixed-time quasi-synchronization of coupled memristive neural networks (CMNNs). The communication channel is subject to the deception attack described by the Bernoulli stochastic variable. To reduce signal transmissions, a dual-channel event-triggered mechanism is proposed. In each channel of sensor to controller and controller to actuator, an event-triggered mechanism is designed. Compared with the single event-triggered mechanism in the communication loop, the main difficulties lie in how to deal with the problems of packet scheduling and network attacks. By using Lyapunov method combining with a new proposed lemma, some sufficient conditions are derived to guarantee the leader-following quasi-synchronization of CMNNs. The Zeno behavior is excluded for the designed dual-channel event-triggered mechanism. The influence of the event-triggered mechanism on the estimation of settling time is discussed. Three numerical examples are provided to show the effectiveness of the theoretical results.  相似文献   

20.
This paper investigates the event-based state and fault estimation problem for stochastic nonlinear system with Markov packet dropout. By introducing the fictitious noise, the fault is augmented to the system state. Then combining the unscented Kalman filter (UKF) with event-triggered and Markov packet dropout, the modified UKF is proposed to estimate the state and fault. Meanwhile, the stochastic stability of the proposed filter is also discussed. Finally, two simulation results illustrate the performance of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号