首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this paper, we address the problem of output containment control of general linear multi-agent systems (MASs). The MAS under consideration is comprised by multiple followers and multiple leaders, all with heterogeneous dynamics. In particular, the leaders’ dynamics are subject to heterogeneous non-zero (possibly persistent) but bounded inputs, which are not measurable for any follower agent, making the associated distributed control design problem rather challenging. A new distributed observer-based containment control protocol is proposed to overcome associated challenges. It consists of two hierarchical layers including (i) the first layer of adaptive finite-time cooperative observer responsible for estimating the convex-hull signals formed by multiple leaders’ states through inter-agent collaboration; and (ii) the second layer of distributed state-feedback controller responsible for local tracking control through a modified output regulation technique. Important novelties of the proposed protocol are that (i) it deals with MASs with not only heterogeneous followers but also heterogeneous leaders; (ii) exact output containment control performance can be achieved in the presence of unmeasurable leaders’ inputs and unknown connectivity of communication network; and (iii) associated solvability conditions are formulated as linear matrix inequalities plus linear algebraic equations, which can be tested and solved effectively via efficient semi-definite programming. The developed theoretical results are demonstrated both rigorously using Lyapunov methods and through numerical simulations.  相似文献   

2.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

3.
This paper investigates the problem of cooperative tracking for Lur’e systems under directed spanning tree topology. First, a control protocol is proposed to achieve cooperative tracking consensus by a distributed observer, which utilizes only the states of neighboring agents based on the event-triggering conditions with mixed node and edge. Then, an improved tracking protocol is developed by considering the case that only the outputs of neighbors can be obtained. With the aid of adaptive updating parameters, the two protocols do not utilize the minimum eigenvalue of Laplacian matrix, and can deal with the nonlinear dynamics of Lur’e systems in a fully distributed manner. Moreover, with the Lyapunov analysis framework, the tracking errors can be proved to converge to zero in both cases. Zeno behavior is excluded from the event-triggering conditions containing states and outputs of neighbors. Finally, the effectiveness of the proposed protocols is verified by two numerical simulations.  相似文献   

4.
This paper considers the distributed tracking control problem for linear multi-agent systems with disturbances and a leader whose control input is nonzero and not available to any follower. Based on the relative output measurements of neighboring agents, a novel distributed observer-based tracking protocol is proposed, where the distributed intermediate estimators are constructed to estimate the leader’s unknown control input and the states of the tracking error system simultaneously, then a distributed tracking protocol is designed based on the derived estimates. It is proved that the states of the tracking error system are uniformly ultimately bounded and an explicit tracking error bound is obtained. A simulation example of aircrafts verifies the effectiveness of the proposed method.  相似文献   

5.
This study examines the leader-following consensus problem of a class of second-order nonlinear multi-agent systems, where the velocity information is supposed to be unmeasurable. Under the setting, this paper presents a novel aperiodically intermittent output feedback control protocol such that all followers reach consensus with the leader, in which a distributed state observer is built for each follower to observe the velocity state. Based on the Lyapunov stability theory and some matrix analysis techniques, a couple of sufficient conditions for the leader-following consensus of the nonlinear multi-agent system under study are obtained even though the velocity state is unavailable. Finally, the effectiveness of the theoretical results is verified by numerical simulation.  相似文献   

6.
Practical time-varying output formation tracking problems with collision avoidance, obstacle dodging and connectivity maintenance for high-order multi-agent systems are investigated, and the practical time-varying output formation tracking error is controlled within an arbitrarily small bound. The outputs of followers are designed to track the output of the leader with unknown control input while retaining the predefined time-varying formation. Uncertainties are considered in the dynamics of the followers and the leader. Firstly, distributed extended state observers are developed to estimate the uncertainties and the leader’s unknown control input. A strategy of obstacle dodging is given by designing an ideal secure position for the followers which are in the threatened area of the obstacles. By constructing collision avoidance, obstacle dodging and connectivity maintenance artificial potential functions, corresponding negative gradient terms are calculated to achieve the safety guarantee. Secondly, a practical time-varying output formation tracking protocol is proposed by using distributed extended state observers and the negative gradient terms. Additionally, an approach is presented to determine the gain parameters in the protocol. The stability of the closed-loop multi-agent system with the protocol is analyzed by using Lyapunov stability theory. Finally, a simulation experiment is provided to illustrate the effectiveness of the obtained methods.  相似文献   

7.
The consensus tacking problem for multi-agent systems with a leader of none control input and unknown control input is studied in this paper. By virtue of the relative state information of neighboring agents, state estimator and disturbance estimator are designed for each follower to estimate the system states and exogenous disturbance, respectively. Meanwhile, a novel control protocol based on two estimators is designed to make tracking error eventually converge to zero. Furthermore, the obtained results are further extended to the leader with unknown control input. A novel state estimator with adaptive time-varying gain is proposed such that consensus tracking condition is independent of the Laplacian matrix with regard to the communication topology. Finally, two examples are presented to verify the feasibility of the proposed control protocol.  相似文献   

8.
This work considers a distributed adaptive output feedback control problem for nonlinear constrained multi-agent systems (MAS) in the prescribed finite time. To begin with, a state observer is constructed to estimate the unmeasurable state. Then, we develop a novel observer based distributed adaptive prescribed finite time output feedback control algorithm by incorporating the prescribed finite-time control technique into the backstepping design method. Through Lyapunov stability theory, it can be shown that all signals of MASs are bounded, the tracking errors converge to the adjustable regions around the origin within the pre-given error accuracy and settling time, and all states keep in the prescribed constraint regions. Finally, a simulation example verifies the efficacy of the obtained theoretical results.  相似文献   

9.
In this paper, we investigate the consensus tracking problem of nonlinear MASs with nonuniform time-varying input delays and external disturbances. For each follower, the composited disturbance observer and the state observer are employed to estimate bounded composited disturbances and unmeasured states, and a distributed observer based on output-feedback is proposed to approximate the leader’s states approachably. Sequentially, the consensus tracking control is converted into a stability control problem for the nonlinear MASs with nonuniform time-varying input delays. Subsequently, a distributed controller based on the truncated prediction approach is presented, which only depends on the boundary value of time-varying input delays. The distributed controller can render each follower synchronically stable via the Lyapunov stability theory. Finally, a group of single-link manipulators is used as an example to verify the effectiveness of the theoretical results.  相似文献   

10.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

11.
The objective of this article is to present an adaptive neural inverse optimal consensus tracking control for nonlinear multi-agent systems (MASs) with unmeasurable states. In the control process, firstly, to approximate the unknown state, a new observer is created which includes the outputs of other agents and their estimated information. The neural network is used to reckon the uncertain nonlinear dynamic systems. Based on a new inverse optimal method and the construction of tuning functions, an adaptive neural inverse optimal consensus tracking controller is proposed, which does not depend on the auxiliary system, thus greatly reducing the computational load. The developed scheme not only insures that all signals of the system are cooperatively semiglobally uniformly ultimately bounded (CSUUB), but also realizes optimal control of all signals. Eventually, two simulations provide the effectiveness of the proposed scheme.  相似文献   

12.
In this paper, the consensus control problem of Takagi-Sugeno (T-S) fuzzy multiagent systems (MASs) is investigated by using an observer based distributed adaptive sliding mode control. A distributed nonfragile observer is put forward to estimate the unmeasured state of agents. Based on such an observer, a novel distributed integral sliding surface is designed to suppress the disturbance and uncertainty of T-S fuzzy MASs. In order to achieve the consensus objective, a nominal distributed protocol and an adaptive sliding mode controller are separately designed. Futhermore, the nominal distributed protocol solves the consensus control problem of T-S fuzzy MASs in the absence of disturbance and uncertainty by using the information of adjacent agents obtained by the observer, while the adaptive sliding mode controller suppresses the disturbance and uncertainty. Finally, the proposed method is applied to two examples. Example 1 verifies the superiority of the method by comparing with the fuzzy-based dynamic sliding mode controller. Example 2 is used to illustrate that our control scheme can effectively solve the consensus control problem of T-S fuzzy MASs.  相似文献   

13.
Time-varying formation tracking problems for high-order multi-agent systems with switching topologies are investigated. Different from the previous work, the states of the followers form a predefined time-varying formation while tracking the state of the leader with bounded unknown control input. Besides, the communication topology can be switching, and the dynamics of each agent can have nonlinearities. Firstly, a nonlinear time-varying formation tracking control protocol is presented which is constructed using only local neighboring information. Secondly, an algorithm with four steps is proposed to design the time-varying formation tracking protocol, where the time-varying formation tracking feasibility condition is introduced. Thirdly, by using the Lyapunov theory, the stability of the proposed algorithm is proven. It is proved that the high-order multi-agent system with switching topologies achieves the time-varying formation tracking if the feasibility condition holds and the dwell time is larger than a positive constant. Finally, a numerical example with six followers and one leader is given to demonstrate the effectiveness of the obtained results.  相似文献   

14.
In this paper, a novel error-driven nonlinear feedback technique is designed for partially constrained errors fuzzy adaptive observer-based dynamic surface control of a class of multiple-input-multiple-output nonlinear systems in the presence of uncertainties and interconnections. There is no requirements that the states are available for the controller design by constructing fuzzy adaptive observer, which can online identify the unmeasurable states using available output information only. By transforming partial tracking errors into new error variables, partially constrained tracking errors can be guaranteed to be confined in pre-specified performance regions. The feature of the error-driven nonlinear feedback technique is that the feedback gain self-adjusts with varying tracking errors, which prevents high-gain chattering with large errors and guarantees disturbance attenuation with small errors. Based on a new non-quadratic Lyapunov function, it is proved that the signals in the resulted closed-loop system are kept bounded. Simulation and comparative results are given to demonstrate the effectiveness of the proposed method.  相似文献   

15.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

16.
The comprehensive effect of external disturbance, measurement delay, unmeasurable states and input saturation makes the difficulties and challenges for a HAGC system. In this paper, an adaptive fuzzy output feedback control scheme is designed for a HAGC system under the simultaneous consideration of those factors. At the first place, by state transformation technique, the dynamic model of a HAGC system is simply expressed as a strict feedback form, where measurement delay is converted into input delay. Then, an auxiliary system is employed to compensate for the effect of input delay. Furthermore, an asymmetric barrier Lyapunov function (BLF) is constructed to ensure the output error constraint requirement of thickness error and the fuzzy observer is established to solve unmeasurable states, unknown nonlinear functions at the same time. With the aid of backstepping method, adaptive fuzzy controller is developed to assure that the closed-loop system is semi-globally boundedness and the output error of thickness error doesn’t violate its constraint. At the end, compared simulations are carried out to verify the efficiency of the proposed control scheme.  相似文献   

17.
In this paper, the leader-following bipartite consensus is investigated for a group of uncertain multiple Euler–Lagrange systems with disturbances. An innovative adaptive distributed observer is developed without requiring that followers surely acquire the leader’s auxiliary state and system matrix. A directed signed network satisfying the principle of structural balance is exploited to describe the interaction among agents. Then a novel bipartite consensus control protocol is proposed to solve the bipartite consensus problem of multiple Euler–Lagrange systems. The theoretical proof is provided via constructing a Lyapunov function and applying Barbalat lemma to analyze the convergence problem. Finally, a numerical simulation is utilized to demonstrate the effectiveness of proposed method.  相似文献   

18.
This paper focuses on the fixed-time leader-following consensus problem for multiple Euler–Lagrange (EL) systems via non-singular terminal sliding mode control under a directed graph. Firstly, for each EL system, a local fixed-time disturbance observer is introduced to estimate the compound disturbance (including uncertain parameters and external disturbances) within a fixed time under the assumption that the disturbance is bounded. Next, a distributed fixed-time observer is designed to estimate the leader’s position and velocity, and the consensus problem is transformed into a local tracking problem by introducing such an observer. On the basis of the two types of observers designed, a novel non-singular terminal sliding surface is proposed to guarantee that the tracking errors on the sliding surface converge to zero within a fixed time. Furthermore, the presented control algorithm also ensures the fixed-time reachability of the sliding surface, while avoiding the singularity problem. Finally, the effectiveness of the proposed observers and control protocol is further verified by a numerical simulation.  相似文献   

19.
This paper considers the identification problem of bilinear systems with measurement noise in the form of the moving average model. In particular, we present an interactive estimation algorithm for unmeasurable states and parameters based on the hierarchical identification principle. For unknown states, we formulate a novel bilinear state observer from input-output measurements using the Kalman filter. Then a bilinear state observer based multi-innovation extended stochastic gradient (BSO-MI-ESG) algorithm is proposed to estimate the unknown system parameters. A linear filter is utilized to improve the parameter estimation accuracy and a filtering based BSO-MI-ESG algorithm is presented using the data filtering technique. In the numerical example, we illustrate the effectiveness of the proposed identification methods.  相似文献   

20.
In this study, the distributed tracking problem for human-in-the-loop multi-agent systems (HiTL MASs) has been investigated. First, we construct an HiTL MAS model with a non-autonomous leader which can receive the control signal from a human operator and generate the desired trajectory. The human control signal is assumed to be generated by a leader’s state feedback control law with an unknown gain matrix that represents the control behavior of the human operator. Then, we propose a fully distributed adaptive control method that enables all followers to simultaneously track the human-controlled leader and online learn the unknown human operator’s feedback gain matrix. Furthermore, the parameter estimation error is also discussed, and all followers will learn the true value of the human operator’s feedback gain matrix when the state of the leader satisfies the persistent excitation (PE) condition. Moreover, a novel distributed adaptive control law is developed for each follower to remove the PE condition by utilizing the concurrent learning (CL) technique. Finally, simulated examples demonstrating the effectiveness of the proposed methodologies are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号