首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
■一、有公因式不提例1 分解因式8x3 - 32xy.错解:原式=x(8x2- 32y).例2 分解因式4x2yz + 16y2.错解:原式=4(x2yz+ 4y2).评析:提取公因式时,既要提取相同字母的最低次幂,也要提取各项系数的最大公约数,因为公因式包括公因数,否则,都是不正确的.正解:1.原式=8x(x2- 4y).2.原式= 4y(x2z + 4y).■二、公因式提不尽例3 分解因式3x(m - n) - 6y(n - m).错解:原式=3[x(m -n) - 2y(n - m)]=3(mx - nx - 2ny + 2my).评析:公因式既可以是单项式也可以是多项式,n - m可变形为- (m - n),因此,上题中的公因式应为3(m - n).正解:原式=3x(m - n) + 6y( …  相似文献   

2.
我们知道运用乘法公式能使计算简便,然而,能否运用乘法公式简捷计算,关键在于熟练掌握运用技巧.本文所述乘法公式的“六用”技巧,相信一定会使你大开眼界.一、直接用例1计算:(-4m-3n)(4m-3n).解:原式=(-3n)2-(4m)2=9n2-16m2.评注:即使直接应用公式,也别忘了符号变化.二、推广用例2计算:(1)(a b c)2;(2)(m-3n 2)2.解:(1)原式=[(a b) c]2=(a b)2 2(a b)c c2=a2 b2 c2 2ab 2bc 2ac.(2)由(1)得:原式=m2 (-3n)2 22 2m(-3n) 2(-3n)×2 2m×2=m2 9n2-6mn 4m-12n 4.评注:(1)(a b)2=a2 b2 c2 2ab 2bc 2ac实际上是完全平方公式的推广;(2)第(2)小题又利…  相似文献   

3.
二次根式的化简 ,是现行教材中的重点及难点之一 ,也是中考中常见的题型。要求学生能根据各类题目本身的特点 ,采取灵活的解题技巧。一、约分例 1.化简 33- 2 6(2 - 2 ) 2 。解 :原式 =33- 2 6(6 - 42 )=3(3- 2 2 )2 (3- 2 2 )=32 。二、逆用法则例 2 .化简 5 + 33+ 42(5 + 2 ) (3+ 2 )。解 :原式 =5 + 33+ 32 + 2(5 + 2 ) (3+ 2 )=13+ 2+ 35 + 2=5 + 3- 2 2。三、先平方 ,再开方例 3.求 2 + 61+ 3的值。解 :令 a=2 + 61+ 3,则 a2 =8+ 434+ 2 3=2 ,∵ a>0 ,∴原式 =2。四、配方例 4 .化简 2 63+ 2 - 5。解 :原式 =(2 ) 2 + 2 6 + (3) 2 - (5…  相似文献   

4.
~~《数学竞赛训练题》参考答案1D.221.37.4C.598.6239.7a与e,b与d,c与f是对面.8当0相似文献   

5.
(本讲适合高中)4递推法对所求组合数,也可探求其中的递推规律,获取相应的递推式并加以解决,从而得到所求组合数.例10求∑nk=012kCnk k.解:设原式为f(n),则f(0)=1.由恒等式(Ⅱ),有f(n 1)=∑n 1k=0Cnk 1 k·21k=∑n 1k=0Cnk k·21k ∑nk =11Ckn- 1k·21k.将前一项分成f(n) C2nn 11·21n 1.变动后一项组合数上、下指标及求和指标,以k代原式中的k-1,得∑n 1k=1Ckn -1k·21k=∑k=n0Cnk k 1·2k1 1.故f(n 1)=f(n) C2nn 11·2n1 1 21∑k=n0Cnk k 1·21k.考虑到C2nn 12=(n (21)n! (2n) !1)!=2·n(2!(nn 11))!!=2C2nn 11,则f(n 1)=f(n) 122…  相似文献   

6.
拆项是数学学习中重要的一种解题方法 ,它指的是将代数式中的某项有意识地变形成两项或多项的和。灵活地应用这种方法 ,可很好地利用有关的公式、定理和已知条件 ,从而使解题简便易行。一、用于有理数计算例 1.计算 9999× 9999+19999。解 :原式 =(9999× 9999+9999) +10 0 0 0=9999× (9999+1) +10 0 0 0=10 0 0 0× (9999+1)=10 0 0 0 0 0 0 0。二、用于分解因式例 2 .分解因式 x3 +2 x2 - 5 x- 6。解 :原式 =(x3 +2 x2 +x) - (6 x+6 )=x(x+1) 2 - 6 (x+1)=(x+1) (x- 2 ) (x+3)。例 3.分解因式 x4 +x2 +2 ax+1- a2 。解 :原式 =(x4 +2 x2 …  相似文献   

7.
大家都知道,二次方程ax~2+bx+c=0…①的根与判别式△=b~2-4ac的关系:△>0圳①有两个不等实根;△=0圳①有两个相等实根;△<0圳①没有实根.“运用之妙,存乎一心”.判别式看似简单,实在神通广大,请看数例:例1已知ba+ca=1,求证:b2+4ac≥0.分析已知式可整理为a-b-c=0,由此可知方程ax2-bx-c=0有根x=1,所以△=(-b)2-4a(-c)≥0,即b2+4ac≥0.例2求正整数n,使28+211+2n为完全平方数.分析设x=24,原式就是x2+27·x+2n,要使它是完全平方数只要△=(27)2-4·1·2n=0,可解得n=12.例3求二次函数y=ax2+bx+c的最值.分析本题可用配方法解,也可以用判别式解决.函…  相似文献   

8.
板斧1凑整法例1计算:(-285)×1.25×(-8).解:原式=285×(1.25×8)=285×10=351例2计算:1625000÷125-604×25.解:原式=1625000÷(1000÷8)-604×(100÷4)=1625000÷1000×8-604×100÷4=13000-15100=-2100板斧2乘法分配律与结合律例3计算:7×13×(171-1113).解:原式=7×13×(71  相似文献   

9.
先化简,后求值是求代数式的值的一般方法.但对于求某些条件代数式的值的问题,特别是对于竞赛题,若能灵活地应用已知条件,挖掘隐含条件,巧妙构造算式,则可简化计算过程,从而达到快捷获解之目的.例1若a2+a=1,求a4-3a2+2的值.解:由a2+a=1得a=1-a2.∴原式=(a4-2a2+1)+(1-a2)=(1-a2)2+(1-a2)=a2+a=1.注:这里充分运用了1-a2=a这一降次的隐含条件.例2已知a2+a-1=0,求a3+2a2+3的值.解:由a2+a-1=0得a2+a=1.∴原式=a3+a2+a2+3=a(a2+a)+(1-a)+3=a+(1-a)+3=4.注:这里运用了隐含条件a2+a=1凑配代入而得解.例3已知m+n+k=0,求证:m3+m2k+n2k+n3-mnk=0.证明:…  相似文献   

10.
有些分数问题 ,适当地用字母表示数 ,使之转化为分式问题 ,就可以使问题得以巧妙解决 .请看几例 .例 1 计算 :199919982199919972 199919992 -2 .解 设 19991998=n ,则原式 =n2(n -1) 2 (n 1) 2 -2 =n22n2 =12 .例 2  -191919919191-190 190910 910 -190 0 190 0910 0 910 0 的值等于 (   ) .(A) -3  (B) -5 791  (C) -1  (D) -13解 设 19=a ,91=b ,则原式 =-10 10 1a10 10 1b-10 0 10a10 0 10b-10 0 0 10 0a10 0 0 10 0b=-ab(1 1 1) =-3ab=-5 791.应选 (B) .例 3 已知M =5 6 7890 12 346 7890 1…  相似文献   

11.
1.分母有理化例 1.化简 16 - 2。解 :原式 =6 + 2(6 - 2 ) (6 + 2 )= 6 + 24 。〔说明〕:利用分母有理化化简二次根式的关键是准确地找出分母的最简化有理因式 ,再利用分式的基本性质运算。2 .运用公式法例 2 .计算 :(2 + 3-6 ) (2 - 3- 6 )。解 :原式 =〔(2 - 6 )+ 3〕·〔(2 - 6 ) -3〕 =(2 - 6 ) 2 -( 3) 2 =8- 4 3- 3=5 -4 3。〔说明〕:二次根式的乘除运算 ,要根据题目的特点 ,充分利用乘法公式 ,使计算过程简化。3.拆项法例 3.计算1+ 2 3+ 5(1+ 3) (3+ 5 )。解原式 =(1+ 3) + (3+ 5 )(1+ 3) (3+ 5 )=13+ 5+ 11+ 3=5 - 32 + 3- 12 =5 - …  相似文献   

12.
李建泉 《中等数学》2005,(11):28-31
数论部分1.设τ(n)表示正整数n的正因数的个数.证明:存在无穷多个正整数a,使得方程τ(an)=n没有正整数解n.2.已知从正整数集N 到其自身的函数ψ定义为ψ(n)=∑nk=1(k,n),n∈N ,其中(k,n)表示k和n的最大公因数.(1)证明:对于任意两个互质的正整数m、n,有ψ(mn)=ψ(m)ψ(n);(2)证明:对于每一个a∈N ,方程ψ(x)=ax有一个整数解;(3)求所有的a∈N ,使得方程ψ(x)=ax有唯一的整数解.3.一个从正整数集N 到其自身的函数f满足:对于任意的m、n∈N ,(m2 n)2可以被f2(m) f(n)整除.证明:对于每个n∈N ,有f(n)=n.4.设k是一个大于1的固定的整数,m=4k2-5.…  相似文献   

13.
在解二元一次方程组时 ,若能仔细观察方程组特征 ,并根据解题目标去设计合理的解题方案 ,就会获得巧妙的解题方法 .例 1 若 2 x3 m + 5n+ 9+3 y4m -2 n-7=2 0 0 3是关于 x、y的二元一次方程 ,试求 mn的值 .(广西 2 0 0 3年数学竞赛题 )解 :由题意 ,得 3 m+5 n+9=1,4m-2 n-7=1. 即3 m +5 n=-8,4m -2 n=8. 注意到常数项互为相反数 ,故把两式相加得 :7m +3 n =0 ,∴ 7m =-3 n,∴ mn=-37.例 2 若关于 x、y的方程组 2 x+3 y=2 k+1,  13 x-2 y=4k+3  2 的解 x、y的值之和为 2 40 .试求 k的值 .(2 0 0 1年广西数学竞赛题 )解 :由题意知 :x+y=2…  相似文献   

14.
例l计算击+击+丽2+面4一霄8.解:原式=去+南+丽4一霄8=霄4+面4一霄8=霄8一_88=0二、先分组后通分例2计算jX-r击+击一击.解:原州击一击)+(击一i2)=面4一再4=丢杀.三、先拆项后通分例3化简孟而一丽6+高.解:原削去一击)一(去一六)+(击一鬲1)10. Ⅱ一)n—l 俨,Ⅱ+1 驴l叶l四、先变序后通分例4计算赢+南+1j而·解:原式。乏筝(面十二再y丽+南:一!I!兰!一-+一 _y(!!! + 兰!苎二1 2(z-y)(y呵)0叫)’@了)(y叶)(z叫)。(z了)(y-~)(z-x)一叫(烨)70叫)叶(%-y)一n (z一',)(y-:)(Z-X) 一五、约简后通分例5黼硒丽x3-1一了x2+2丁x+l+鬲x-1解:原式=研(x-l丽)…  相似文献   

15.
妙用“0”     
“0”是数系中介于负数和正数间的一个重要的数,解某些数学题时,如能恰当地利用它,往往能化难为易,化繁为简。 1.添加两个互为相反数的数式凑“0” 例1 分解因式x~4 4. 分析:添上为零的项4x~2-4x~2,原式则易  相似文献   

16.
和差唤元法就是设x=m+n,y=m-n进行代换的方法,利用这种换元法去解关于出现x+y,xy类型数学竞赛题时,往往显得简捷而巧妙,下面举例说明。一、用于计算例1 计算(31·30·29·28+1)~(1/2)。 (第七届美国数学邀请赛题) 解:设31·28=m+n,30·29=m-n。则m=869,n=-1。∴原式=((m+n)(m-n)+1)~(1/2) =(m~2-n~2+1)=m=869。二、用于求条件代数式的值例2 设a+a~(-1)=3,求a~3+a~(-3)的值。解:设a=m+n,a~(-1)=m-n,则  相似文献   

17.
一、常数变换 ,水到渠成例 1.化简 2 62 3 5。分析 :若直接用分母有理化 ,则计算繁杂。若注意到 6=2· 3,2 3=5,0 =2 3- 5,采用添 0后进行因式分解的办法处理 ,解法简捷。解 :原式 =2 6 ( 2 3- 5)2 3 5=( 2 2 6 3) - 52 3 5=( 2 3) 2 - ( 5) 22 3 5= 2 3 - 5。二、平方配方 ,柳暗花明例 2 .计算 5 2 1- 5- 2 1。解 :设 k=5 2 1- 5- 2 1,显然 k>0 ,则 k2 =( 5 2 1- 5- 2 1) 2 =6 ∵ k>0 ,∴ 5 2 1- 5- 2 1=6。三、巧妙换元 ,事半功倍例 3.计算 n 2 n2 - 4n 2 - n2 - 4 n 2 - n2 - 4n 2 n2 - 4 ( n>2 )。分析 :若直接分母有理化…  相似文献   

18.
一、抓特点巧变形,灵活运用公式计算例1计算:20052-2004×2006.分析:根据2004=2005-12006=2005 1特点利用平方差公式可简化运算.解:原式=20052-(2005-1)(2005 1)=20052-(20052-1)=20052-20052 1=1例2计算9982.分析:根据998接近整数1000的特点,把998变成(1000-2)进而利用完全平方差公式或借数凑整,逆用平方差公式计算.解法1:9982=(1000-2)2=1000000-4000 4=996004解法2:9982-22 22=(998 2)(998-2) 22=1000×996 4=996000 4=996004二、根据条件巧变式灵活应用公式求值例3已知:a b=5,ab=-8求:a2-ab b2的值分析:因a b=5,ab=-8,又a2 b2=(a b)2-2a…  相似文献   

19.
第一届希望杯初一第二试有一道填空题:当m____时,二元二次六项式6x~2+mxy-4y~2-x+17y-15可以分解为两个关于 x,y 的二元次三项式的乘积.给出的答案是 m=5.我认为该答案有疏漏.事实上,若将原式视为关于 x 的多项式,并整理为6x~2+(my-1)x+(-4y~2+17y-15),其判式⊿_x=(my-1)~2-4×6(-4y~2+17y-15)=(m~2+96)y~2-(2m+408)y+361.则原式能分解为两个一次实因式的充要条件是Δ_x为一完全平方式.显然,Δ_x是关于 y 的二次三项式,Δ_y=(2m+408)~2-4(m~2+96)×361,由Δ_y=0可得15n~2-17m-290=0,解之得 m=5或 m=-58/15,当 m=5时,原式分解为(3z+4y-5)  相似文献   

20.
因式分解是初中数学中的重要的数学思想方法 ,在解题中有着广泛的应用 ,现举例说明 .一、用于计算例 1 计算 ( 1) (江苏赛题 ) 1.34 5× 0 .34 5× 2 .6 9 - 1.34 53 - 1.34 5× 0 .34 52 =.( 2 ) 2 0 0 33 - 3× 2 0 0 32 - 2 0 0 02 0 0 33 + 2 0 0 32 - 2 0 0 4解 :( 1)原式 =- 1.34 5( 1.34 52 - 0 .34 5× 2 .6 9+0 .34 52 )=- 1.34 5( 1.34 52 - 2× 1.34 5× 0 .34 5+ 0 .34 52 )=- 1.34 5( 1.34 5- 0 .34 5) 2 =- 1.34 5.( 2 )原式 =2 0 0 32 ( 2 0 0 3- 3) - 2 0 0 02 0 0 32 ( 2 0 0 3+ 1) - 2 0 0 4=2 0 0 32× 2 0 0 0 - 2 0 0…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号