首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
解三角题时 ,若选择的方法适当 ,则能起到事半功倍的效果 ,否则 ,费时费力 .下面举例说明解三角题的十种技巧 .一、变角在三角化简和求值时 ,若表达式中出现多个相异的角 ,则选定一个目标 ,将各角朝着这个目标转化 .例 1 已知tg(α β) =4,tg(α -β) =2 ,求sin4α .分析 :此题出现了三种相异的角 :α β ,α-β ,4α ,选定 2α ,因为 (α β) (α -β) =2α ,4α =2 (2α) ,然后适当地选择公式求解 .解 :∵tg2α=tg[(α β) (α-β) ]=tg(α β) tg(α-β)1 -tg(α β)tg(α -β) =-67,∴sin4α =2tg2…  相似文献   

2.
已知某些条件求三角函数的值或对应角是三角习题中常见题型 .这类习题难度不大 ,但学生在处理此类习题时常出现漏解、增解现象 .究其原因 ,是对题设中隐含着的角的范围挖掘不够所致 .本文结合具体例子谈谈这类习题中应注意挖掘的几个方面 .1.注意轴线角的挖掘轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 .解题时应注意挖掘 .例 1 已知sinα =2sinβ ,tgα =3tgβ,求cosα .误解 :∵cosα =sinαtgα=2sinβ3tgβ=23 cosβ ,∴cosβ =32 cosα .又sinβ …  相似文献   

3.
一、整体代入 解某些涉及若干个量的求值题时要有目标意识 ,将题中一些已知式子视作一个整体代入运算 ,可以避免非必求的量参与运算所带来的困难或麻烦 .例 1 已知tanαcotβ =5,求sin(α + β)csc(α - β)的值 .解 :∵ tanαcotβ =5,∴ sin(α + β)csc(α - β) =sin(α+ β)sin(α- β) =sinαcosβ +cosαsinβsinαcosβ -cosαsinβ=tanαcotβ + 1tanαcotβ - 1=32 .二、整体变形 对于某些问题 ,只是静止地观察整体 ,或许仍然不能取得满意的效果 ,若作整…  相似文献   

4.
三角变换的方法与技巧很多 ,归纳起来有十多种 ,但面对具体问题时 ,不少同学就不知选择哪一种 .为此本文介绍如何寻找切入口 ,以便快速解题 .一、从角切入三角变换离不开角 ,仔细分析条件与结论之间、等式的左边和右边之间的角的差异 ,这时解题可从消除角的差异切入 .例 1  ( 2 0 0 2年全国高考题 )已知sin2 2α+sin 2αcosα-cos 2α =1 ,α∈ 0 ,π2 .求sinα、tanα的值 .分析 本题待求角是α ,故可先用倍角公式 ,接下来用因式分解法 ,就可求出sinα=12 ,再求tanα即可 .解 由倍角公式 ,得4sin2 αcos2…  相似文献   

5.
吴国胜 《数学教学研究》2000,(2):F003-F003,F004
定理 设α、β、γ∈R ,则有cosαsin ( β -γ) cosβsin (γ -α) cosγsin (α - β) =0 . ( 1)sinαsin ( β -γ) sinβsin (γ -α) sinγsin (α - β) =0 . ( 2 )证明 构造二元一次方程组xcosα ycosβ =cosγ ,(a)xsinα ysinβ =sinγ . (b)由 (a)、 (b)两式可得xsin(α- β) =sin(γ - β) ,(c)ysin(α- β) =sin(α -γ) . (d)  将 (a)式两边同乘sin (α - β)后 ,再将(c)、 (d)两式代入即得 ( 1) .将 (b)式两边同乘sin (…  相似文献   

6.
运用三角变换固然是解三角题的基本方法 ,但由于三角中的诱导公式较多 ,因此就形成了丰富多彩的变换技巧 .本文试图通过挖掘知识间的横向联系 ,针对题目的特点 ,另辟蹊径 ,实施非三角变换 .这对于发展智力、活跃思维、提高能力大有裨益 .1 代数化策略将三角函数用字母代换 ,转化成代数问题求解 .例 1 已知sinα-cosα =12 ,求sin4α cos4α-sin2 αcos2 α的值 .解 :设sinα =a ,cosα=b ,则a2 b2 =1a-b=12,从而解得 ,ab=38.∴sin4α cos4α -sin2 αcos2 α =(a2 b2 ) 2-3a2 b2 =1 -…  相似文献   

7.
在三角函数这一章的学习过程中常遇到已知三角函数值求角度这方面问题 ,此类问题怎样求解较好呢 ?请看下面几例 :例 1 已知α、β都是锐角 ,且sinα =55,sinβ=1 01 0 ,求证 :α +β=π4.分析 ∵α、β都是锐角 ,且sinα =55,sinβ=1 01 0 ,∴cosα =1 -sin2 α=1 -15=2 55. cosβ=1 -sin2 β=1 -11 0 =3 1 01 0 .∴sin(α +β) =sinαcosβ+cosαsinβ=55×3 1 01 0 +2 55× 1 01 0 =22 .∴    α+β =π4.这种解法有没有错误呢 ?如果有 ,错误又在什么地方呢 ?∵ 0 <α<π2 ,0 <β<π2 ,∴ …  相似文献   

8.
所谓角的变换 ,就是通过分析已知角 (条件中的有关角 )与所求角 (结论中角 )的差异 ,然后对角进行相应的组合 .如 ,α=(α+β) -β,2α =(α+β) +(α-β) ,2 β=(α+β) -(α-β) ,α+β2 =α -β2 -α2 -β ,α-β2= α+β2 -α2 +β ,α=α+β2 +α-β2 ,90° =( 90°-α) +α等等 ,这些变换式在三角函数式的求值、化简和恒等式证明中常常采用 .本文拟从两个方面来说明角度变换是如何进行的 .一、条件求值问题把已知角看成整体 ,将所求角表示为已知角的和、差、倍、半的形式 ,再利用相关的公式求解 .例 1 已知cosα-β2 =-19,sin α2 -…  相似文献   

9.
有些三角问题 ,若能根据已知式的结构 ,挖掘出它的几何背景 ,通过构造解析几何模型 ,化数为形 ,利用数学模型的直观性 ,简捷地求得问题的解.一、构造“直线模型”例1已知cosα -cosβ= - 23,sinα -sinβ,求cos(α +β)与cosα + cosβsinα + sinβ 的值.解 :因为点A(cosα ,sinα)、B(cosβ,sinβ)在单位圆x2+y2=1上.所以直线AB的斜率KAB= sinα-sinβcosα - cosβ= - 34.设直线AB的方程为 y= - 34x+b ,代入x2+y2=1得 :25x2-24…  相似文献   

10.
在解决三角求值问题中 ,学生往往出现错解、漏解、增解甚至无从下手 ,原因是对题设条件理解不够深刻 ,不善于分析题设条件与结论中的角的相互关系 ,特别是对角的范围不注意 .本文通过例题说明上述问题 .一、注意考察轴线角这里所说的轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 ,解题时要小心 ,避免漏解、增解 .例 1 已知cosα =3cos β ,cotα =4cotβ ,求sinα .分析 题中涉及两个角α、β ,但求sinα ,故可利用sin2 β+cos2 β=1消去 β角 .由题设条件 ,得sin…  相似文献   

11.
本文例述带有特定附加条件的三角求值问题 ,给出几种常用的基本对策 .一、先定后变——顺其自然例 1 设 cos (α - β2 ) =- 19,sin ( α2 -β) =23,且 π2 <α <π,0 <β <π2 ,求 cos (α +β)的值 .评析 :一般三角条件求值大都角多且杂 ,这就不要盲目对已知变换 ,而是分析已知与所求 ,确定好基角 .比如本题已知角为α - β2 ,α2 -β,可求为 :α+β= (α - β2 ) - ( α2 -β) ,于是据条件只须求出 sin (α- β2 ) ,cos ( α2 -β)的值即可 .答案 :cos(α +β) =- 2 3972 9.二、代入变形——酌情而定例 2 已知 cos 2θ =2 - 1,求 sin4 …  相似文献   

12.
题目 若cosα -cosβ =12 ,①sinα -sinβ=- 13,②求 sin(α β) .赵春祥老师在文 [1]中介绍了一种学生的解法和他的两个启示 ,所介绍的学生解法是先由①2 ②2 求得cosα(α - β) =5 972 ,再由①2 -②2 得到cos(α β) [2cos(α - β) - 2 ]=  相似文献   

13.
定理 1 设α ,β ,γ∈R ,则有cos2 αsin( β γ)sin( β-γ) cos2 βsin(γ α)sin(γ -α) cos2 γsin(α β)sin(α - β) =0 . ( 1)  定理 2 设α ,β ,γ∈R ,则有sin2 αsin( β γ)sin( β -γ) sin2 βsin(γ α)sin(γ-α) sin2 γsin(α β)sin(α- β) =0 ( 2 )  证明 沿用文〔1〕、〔2〕的方法 ,构造二元一次方程组xcos2 α ycos2 β =cos2 γ , (a)xsin2 α ysin2 β =sin2 γ . (b)由 (a)、(b)两式可得xsin( β α)s…  相似文献   

14.
错在哪里     
1 安徽淮南十六中 刘华为  (邮编 :2 32 0 53)题 已知cosαcosβ =1 /2 ,sinαsinβ =m ,求m的取值范围。解一 ∵cosαcosβ sinαsinβ=( 1 /2 ) m ,∴cos(α -β) =( 1 /2 ) m ,∴ -1≤ ( 1 /2 ) m≤ 1 ,∴ -3/2≤m≤ 1 /2。又 -1≤sinαsinβ≤ 1 ,故 -1≤m≤ 1 /2。解二 仿照解法一易得cos(α β) =( 1 /2 ) -m ,综合 -1≤cos(α β)≤ 1 ,得 -1 /2≤m≤ 3/2。又 -1≤sinαsinβ≤ 1 ,故 -1 /2≤m≤ 1。解三 ∵ 1 /4 =cos2 αcos2 β=( 1 -sin2 α) ( 1 -…  相似文献   

15.
在三角函数的条件求值问题中 ,常需要运用整体观念 ,巧变角 ,沟通条件式和欲求式之间的关系 .现举两例说明 .例 1 已知cosα-π3 =1 51 7.,-π2 <α<0 ,求cosα的值 .分析 若将条件式cosα-π3 直接展开求cosα ,虽然思路清晰 ,但无疑有一定的计算量 .若将α-π3 看作整体 ,则cosα =cosα -π3 +π3=12 cosα-π3 -32 sinα-π3=1 53 4-32 sinα -π3 ,∵ -π2 <α<0 ,∴ -5π6<α -π3 <-π3 ,∴sinα -π3 =-81 7,∴cosα=1 5+833 4.注 本题通过角的变换α=α-π3 +π3 ,只需求出sinα -π3 的值…  相似文献   

16.
在三角函数这一章里 ,由于公式多 ,解题方法比较灵活 ,但有时若解法选择不当 ,不仅解起来十分麻烦 ,而且还会出错 .下面分析一例 .例 若cosα -cosβ=12 ,①sinα-sin β=-13 .②求sin(α β) .对于①、②形式出现的三角习题 ,等式两边平方是常见解法 ,学生受其影响 ,产生了下面解法 .解 :①2 ②2 得2 -2cos(α -β) =1 33 6 ,所以有cos(α -β) =5972 ,①2 -②2 得cos 2α cos 2 β -2cos(α β) =53 6 ,即cos(α β)cos(α -β) -2cos(α β) =53 6 ,∴cos(α β) [2cos(α -β) -2 …  相似文献   

17.
三角变换是体现化归思想方法、培养逻辑推理能力的重要内容,是处理许多数学问题和实际应用问题的工具.正确的进行三角变换,不仅要求对教材中的公式有准确的理解,要求能够根据不同的变换目的,对公式进行合理地选择,还要求有一定的观察、运算和分析、综合的能力.下面举例说明进行三角变换的基本途径.一、角的变换在三角变换中,常常涉及到许多相异的角,变角就是从题设条件和结论中寻找一个变形的目标,将其余的角都向这个目标转化,其转化的途径是确立角之间的和、差、倍、半、互补、互余等之间的运算关系或运算结果,合理选择公式.例1.已知2cos(2α β) 3cosβ=0,求tan(α β)tanα的值.分析:观察角度,发现已知式与欲求式中的角存在联系:2α β=(α β) α,而β=(α β)-α,据此,可考虑对已知式运用和、差角公式展开.解:已知即.2cos[(α β) α] 3cos[(α β)-α]=0,即2cos(α β)cosα-2sin(α β)sinα 3[cos(α β)cosα sin(α β)sinα]=0∴5cos(α β)cosα=-sin(α β)sinα,即.tan(α β)tanα=-5二、函数名称的变换当所...  相似文献   

18.
两块互相垂直的平面镜对光线的作用有其独特之处 .如图 1所示 ,平面镜oa、ob互相垂直 ,光线AB以入射角α入射到镜面oa ,经镜面oa、ob两次反射后 ,沿CD方向射出 .1、由反射定律知 :α′=α ,β′ =β ,且α′ β =90°,故α α′ β β′=1 80°,即CD∥AB ,且与α的大小无关 .设OB=L ,则BC =Lsinα,光线CD与AB之间的距离 :d =BCsin2 β =Lsin2 βsinα=Lsin( 1 80°-2α)sinα =Lsin2αsinα =2Lcosα显然 ,d由L、α决定 .2 保持入射点B不变 ,但使入射角α增大 ,则光线C…  相似文献   

19.
题 : 已知α、β为锐角 ,且sin(α +2 β) =2sinα,求角α的最大值 ,并求此时tan(α +β)的值。这是南充市 8所重点中学 ,高中 2 0 0 2级第一次联考第 1 9题 ,试题遵循了“能力立意、强调综合、重视数学思想和方法考查”的高考命题原则 ,是整套试卷的把关题之一。现就它的解法作些分析并给出更一般性的结论。1 突出通法 ,获得结论直接展开求含tanα的三角函数的解析式 ,运用万能公式化简 ,利用基本不等式求α的最值。由题设知 sin(α +2 β) =2sinα ,∴sinαcos2 β +cosαsin2 β=2sinα ,∴cosα…  相似文献   

20.
题目 已知 3sin2 α +2sin2 β =2sinα,求sin2 α +sin2 β的取值范围 .错解 ∵ 3sin2 α+2sin2 β=2sinα,∴sin2 α+sin2 β  =sin2 α +12 ( 2sinα -3sin2 α)  =-12 sin2 α+sinα  =-12 (sinα-1 ) 2 +12 .∵sinα∈ [-1 ,1 ],∴sin2 α +sin2 β∈ -32 ,12 .剖析 在上述求解过程中 ,已注意到sinα取值范围 :-1 ≤sinα≤ 1 ,但是还没有注意到题设条件对sinα的取值限制 .事实上 ,由 3sin2 α+2sin2 β=2sinα ,得sin2 β=12 ( 2sinα-3s…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号