首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
夏涛 《科协论坛》2008,(6):47-47
本文使用了紧致密度矩阵的方法,在有效质量近似下,对CdSe/ZnS核-壳结构的球型量子点中的光学克尔效应进行了研究.我们得到了不同核层半径R1和壳层厚度R2与量子点光学克尔效应三阶极化率x3ate谈施工的函数曲线,计算结果表明,在3nm-10nm的范围内,量子点的光学克尔效应强度和该量子点的尺寸密切相关.  相似文献   

2.
在当今Si基光电子研究中,SiGe材料系自组织Ge量子点是最有希望对Si材料运用能带工程实现人工改性的途径之一。Ge在Si上 4.2 %的晶格失配可以制造大小尺寸不同的纳米结构,还可适应其他多种器件需要。对自组织Ge量子点的形成过程、形貌演化、光学和电学性质,以及提高量子点平面排布有序性的方法进行了系统的分析和研究,并着重介绍了实验中发现的新现象、新模型和新方法,其中包括量子点的反常形状跃迁、自覆盖效应、Ge/Si量子点的II型能带结构、Ge/Si量子点的载流子热弛豫模型和纳米尺寸的周期性图形衬底的全息制备方法  相似文献   

3.
利用“幻数稳定团簇 模板”方法在半导体Si(111)衬底上第一次成功地外延生长出了尺寸相同、空间分布均匀的金属纳米团簇阵列。这种方法适用于不同的金属,制备出的纳米团簇阵列热稳定性非常高。用扫描隧道显微镜(STM)原位分析结合第一性原理计算确定了纳米团簇的原子结构以及阵列的形成机理。  相似文献   

4.
本文提出了一个GaAs/AlxGa1-xAs量子点量子阱的理论模型,并采用二能级模型对其尺寸相关的三阶极化率进行了计算.计算结果表明:对一个GaAs/AlxGa1-xAs盘状量子点量子阱,其三阶极化率的变化规律与量子点的径向尺寸的变化有密切关系.  相似文献   

5.
《科技风》2017,(14)
量子振荡作为探测材料费米面的有效工具之一,在近年来探索拓扑材料的过程中,更加凸显它的作用。本文通过分析量子振荡的公式,提出一种快速准确处理量子振荡数据的方法,可以更容易获得材料的电子有效质量的信息。  相似文献   

6.
团簇是原子、分子向固相材料过渡的桥梁,由于其显著的量子尺寸效应而表现出许多特别的,与原子、分子和固体材料不同的物理、化学性质。本文针对团簇的结构、性质等特点,从团簇的磁性、光学、生物医学、催化、储氢和超原子等方面对其结构、性质以及潜在应用的研究进展进行简述。  相似文献   

7.
纳米材料是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。由于其组成单元的尺度小,纳米材料具有小尺寸效应、表面效应、量子效应、催化、发光特性等,使其在陶瓷领域、微电子学、生物工程、光电领域、化工领域、医药领域等都有广泛的应用。基于此,纳米材料的制备及其应用越来越受到国内外学者的重视。针对纳米材料的化学制备方法进行介绍。  相似文献   

8.
对物质状态的调控是推动科技发展的重要源动力之一。在人类发展历史上,对硅基材料中电子的调控,导致了晶体管等电子器件的诞生,从而进入信息时代。但是,进入21世纪以来,随着器件尺寸的不断减小,能耗问题、量子隧穿与量子涨落效应等从根本上阻碍了器件的进一步微型化和集成,成为现代信息和电子科技发展的瓶颈。我们迫切地需要探索、开发高效率、低能耗和突破量子尺寸效应的新一代器件。从物理本质上看,传统的半导体器件的物理基础,是半导体中电子的扩散输运现象。可以说对半导体中电子扩散输运的深刻理解,催生了20世纪下半叶的一系列信息工业的革命。因此,要突破目前电子工业的发展瓶颈,也必须建立在对凝聚物质新材料、新物态中电子运动模式的深刻理解之上。  相似文献   

9.
固体中的电子天然具有自旋和轨道自由度。近年来,随着自旋电子学以及拓扑材料领域的迅猛发展,由自旋轨道耦合效应引起的新奇物理现象越来越受到人们的广泛关注。比如,磁晶各向异性、自旋霍尔效应、反常霍尔效应以及各种拓扑绝缘体等,它们为未来的高密度存储以及低损耗的量子计算提供可能的实现方案。本文介绍了自旋轨道耦合作用的起源以及其在固体材料的体系,为进一步分析和理解固体材料中和自旋轨道耦合及其相关的新奇物理效应提供理论指导。  相似文献   

10.
固体微结构物理国家重点实验室始创于1 984年,是由国家计委首批投资建设的国家重点实验室之一.固体微结构物理国家重点实验室以重大前沿科学问题和国民经济发展的重大需求为导向,以凝聚态物质科学研究为核心,包括人工微结构物理、量子调控电子学,纳米结构物性和器件、软物质功能材料、微结构材料设计和理论计算、基于微结构的能源材料等基础研究和应用性基础研究方向.  相似文献   

11.
超导材料具有零电阻特性、完全抗磁性和宏观量子效应等诸多常规材料所不具备的奇特性质。如何合理、准确地选择合适、有效的理化检测技术和表征手段对研究超导材料物相、微观结构和超导性能等具有重要意义。本文对XRD、SEM、XAS等理化检测新技术与新方法在研究与制备超导材料过程中的检测与表征应用进行了简单综述。  相似文献   

12.
从1960年第一台激光器问世以来,激光技术与应用发展迅猛,极大地推动了科学技术的发展与物质文明的提高。按照激光产生的物理原理,要实现激光输出必须在激光物质中实现粒子数反转,而如何控制反转后的粒子的自发辐射,便成了物理学家需要攻克的重要难题。北京计算科学研究中心朱诗尧教授长期从事量子光学研究、激光物理和光与物质相互作用的研究。证明了可以用量子干涉效应去抑制(或增强)多能级体系中的自发辐射,同时还创造性地提出了用量子干涉效应导致双下能级连续运转下的受激吸收相消理论。他将经典光学中相干现象引申到量子光学的能级跃迈问题中,提出了通过量子干涉控制和调制自发辐射及受激吸收的原理,发展了由爱因斯坦和狄拉克创建起来的自发辐射及受激吸收理论。是量子光学基础理论研究的创新。  相似文献   

13.
《中国科学院院刊》2013,(6):799-800
中科院福建物质结构所吴立明研究员课题组通过全局粒子群的优化搜索算法与第一性原理方法相结合的手段,成功地预测了能隙为1.09eV 的二维平面SiC2硅碳石墨烯(g-SiC2)材料。  相似文献   

14.
理论与计算对现代化学的发展起着至关重要的作用。通过电子结构计算我们可以获得体系的各种性质。电子结构理论与计算的发展方向是提高对某些复杂体系的计算精度,同时提高计算效率使处理更大的体系成为可能。对三原子反应,反应动力学计算已经可以精确地考虑量子效应。多原子气相反应和复杂体系的动力学行为是目前的研究难点。统计力学与分子模拟面临的最大挑战是构造普适精确的分子力场与粗粒化模型,以及多尺度模拟方法。近年来,我国的理论与计算化学发展很快,同时也面临很大的机遇与挑战。  相似文献   

15.
岩石材料由于其非均质性,其强度值存在尺寸效应。本文利用真实破裂过程分析系统RFPA~(2D),对一端约束一端自由,一端梯形荷载一端均布荷载和反对称荷载3种边界条件下进行了数值模拟,得到了不同边界条件下岩石强度尺寸效应的数值结果以及其破裂形式。结果表明:(1)在3种不同边界条件下,岩石均存在尺寸效应,随着试件尺寸的增大,其抗压强度不断减小,且在一端约束一端自由的边界条件下,岩石强度尺寸效应较其他2种边界条件更加明显;(2) 3种边界条件下,其破坏形式均呈沿一定角度的剪切破坏。研究结果对于在复杂的边界条件下的岩石的开采以及准确测定不同边界条件下室内试验的尺寸具有一定的指导意义。  相似文献   

16.
分析铁磁-量子点-超导体异质结中,量子点内存在自旋翻转相互作用时的自旋输运问题.采用非平衡格林函数方法,计算隧穿自旋流和自旋电导.结果表明,即使在一般温度和自旋极化强度下,自旋电导依赖于铁磁体内交换场方向,产生可控的巨自旋磁阻效应.  相似文献   

17.
用Hg(NO3)2和TAA为原料,以玻璃酸钠为模板于室温条件下于水溶液中合成了粒度分布均匀、分散性好的HgS纳米粒子.产物为球形的多晶粒子,平均粒径为10nm,属于立方闪锌矿结构.合成的纳米晶具有良好的光学性能,与体相材料相比表现出明显的量子尺寸效应.用XRD、TEM和Uv-vis等实验手段对产物进行了分析和表征,并对HgS纳米晶的形成机理进行了初步探讨.  相似文献   

18.
利用第一性原理计算方法研究了单斜结构氧化钨的电子性质,计算表明,单斜结构氧化钨是窄带隙的间接带隙半导体,零压下的带隙为1.36 eV。W-O化学键是共价键和离子键的混合。  相似文献   

19.
受益于约瑟夫森效应的发展,超导量子比特的计算性能在过去的十年提高了几个数量级,但量子信息处理器的纠缠和多量子比特计算仍需要解决很多具体的架构问题,必须掌握量子纠错设计和系统耗散性质,使得量子纠缠能够保持。文章中在叙述现有量子计算的基础上总结了未来发展方向的蓝图。  相似文献   

20.
南京大学固体微结构物理国家重点实验室始创于1984年,是由原国家计委首批投资建设的国家重点实验室之一。实验室以重大前沿科学问题和国民经济发展的重大需求为导向,以凝聚态物质科学研究为核心,包括人工微结构物理、量子调控电子学、纳米结构物性和器件、软物质功能材料、微结构材料设计和理论计算、基于微结构的能源材料等基础研究和应用性基础研究方向。固体微结构物理国家重点实验室以物质科学为依托,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号