首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定理凸四边形的两条对角线把四边形划分成的四个小三角形中,两组对顶的两个三角形面积之积相等. 证明:如图1,记∠AOB=α,△AOB、△COD△AOD、△BOC的面积分别为S_1、S_2、S_3、S_4,则由三角形面积公式有S_1·S_2=1/2AO·BO·sinα·1/2CO·DO·sinα,S_3·S_4=1/2AO·DO·sin(180°-α)·1/2BO·CO·sin(180°-α)故得,S_1·S_2=S_3·S_4。  相似文献   

2.
<正>张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为α、β,则sin(α+β)/PC=sinα/PB+sinβ/PA.证明因为S_(△PAB)=S_(△PAC)+S_(△PCB),所以1/2PA·PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.下面举例说明它的应用.例1如图2,已知BP:PQ:QC=3:2:1,AG:GC=4:3,则BE:EF:FG=___.  相似文献   

3.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

4.
<正>面积问题是几何中常见的问题之一,一般都会转化为三角形的面积来求,本文就来谈谈这类问题的解法。例1在△ABC中,AB=4cm,AC=3cm,∠BAC的角平分线AD=2cm,求此三角形的面积。解:如图1,在△ABC中,设∠BAC=α,S_(△ABC)=S_(△ADC)+S_(△ADB)。所以1/2AB·AC·sinα=1/2AC·  相似文献   

5.
三角形内(外)角平分线定理三角形的内(或外)角平分线分对边所得两条线段和这个角的两边对应成比例。证明:这里采取利用三角形面积的证法。如图1,AD(AE)是△ABC的内角∠CAB(外角∠CAF)的平分线,作DG⊥AB,自D作AC的垂线交延长线于H,则DG=DH。于是 S_(ΔABD):S_(ΔACD)=(1/2AB×DG):(1/2AC×DH)=AB:AC又设BC与AD的夹角为α(锐角),则当以AD为底时△ADB与△ADC的高BM、CN分别为BDsinα,DCsinα。这样,S_(ΔADB):S_(ΔADC)=(1/2AD×BDsinα)  相似文献   

6.
本文现将三角形内角平分线定理的推广及其在证明几个著名几可定理中的应用介绍如下: 一推广如图1,已知P为△ABC的AB边上一(内分)点,求证:PA/PB=CAsinα/(CBsinβ) 证明∵ S_(△CAP)/S_(△CBP)=PA/PB(同高) ∴ S_(△CAP)/S_(△CBP)=1/2CA·CPsinα/(1/2CB·CPsinβ)显然,当α=β时,则sinα=sinβ,  相似文献   

7.
四面体是特殊的棱锥,其体积公式有多种,其中之一为:如图,设四面体 A—BCD中,S_(△ABC)=S_1,S_(△BCD)=S_2,二面角 A-BC-D=α,BC=l,则体积 V=(2S_1S_2)/(3l)sinα(*)利用锥体的体积公式不难证明.我们感兴趣的是利用体  相似文献   

8.
定理 设P是△ABC所在平面上一点,AP,BP,CP分别与对边BC,CA,AB所在的直线交于D,E,F,则AP/PD=AE/EC AF/FB. 证明 如图1,因为△APC和△BPC有公共边CP,故S_(△APC)/S_(△BPC)=AF/FB,同理S_(△APB)/S_(△BPC)=AE/EC。 图1 ∴AE/EC AF/FB=S_(△APC)/S_(△BPC) S_(△ABC)/S_(△BPC)=(S_(△ABC)-S_(△BPC))/S_(△BPC)=(S_(△ABC)/S_(△BPC)-1)=AD/PD-1=AP/PD。 即AP/PD=AE/EC AF/FB。  相似文献   

9.
命题1“等边三角形内任一点至三边距离之和为一定值”有几种证法,但以下面的证法较简便。证明:如图1,连结PA,PB,PC. ∵S_(△ABC)=S_(△PBC)+S_(△PCA)+S_(△pAB),∴S_(△ABC)=1/2BC·PD+1/2CA·PE+1/2AB·PF又 AB=BC=CA,∴ PD+PE+PF=2S_(△ABC)/BC. 等边三角形的这一性质可推广到等边凸多边形中,以上的证明实质上给出如下的定理1 等边凸多边形内任一点至各边的距离之和为定值。特殊地,正多边形内任一点至各边的距离之和为定值。  相似文献   

10.
一、三角形重心的一个筹价性质 G是ΔABC的重心S_(ΔAGB)=S_(ΔBGC)=S_(ΔCGA) 证明:充分性(如图1)设G是重心,延AG交BC于D,则D是BC的中点,从而 S_(ΔABD)=S_(ΔADC) (1) S_(ΔBGD)=S_(ΔCDG) (2) (1)-(2)得S_(△AGB)=S_(ΔAGC)。  相似文献   

11.
在中学数学中所涉及的三角形面积公式很多,灵活地运用它,均会收到满意的效果,其中公式S_△=1/2bcsinA为证明平面几何中两个三角形面积相等开辟了一条蹊径,下面举几例供读者参考: 例1 如图1,在△ABC中,AB=AC,D为底边上任一点,作∠BDE=∠CDF,交两腰于E、F。求证:S_(△BDF)=S_(△CDE)。  相似文献   

12.
本文介绍三角形分角线长的一个公式,并举例说明它在数学竞赛解题中的广泛应用。目的在于启发学生的解题思路,培养其创造性思维能力。定理△ABC的顶点A、B、C所对的边分别为a、b、c,D是边C上任一点,CD分∠C为α、β,则 CD=absin(α β)/asinα bsinβ证明;如图, ∵ S_(△BCD) S_(△ACD)=S_(△ABC), ∴ 1/2a·CDsinα 1/2b·CDsinβ =1/2absin(α β),  相似文献   

13.
“如图1,在梯形ABCD中,若AD∥BC,AC和BD交于点O,则S_(△OAB)=S_(△OCD)”(部编几何第一册P.215)。由此题容易推出:S_1·S_2=1/2OA·OD·sin(180°-α)·1/2  相似文献   

14.
<正>在直角坐标系中,△ABC的顶点A(x_A,y_A),B(x_B,y_B),C(x_C,y_C),过点A作l∥y轴,交BC所在直线于点D,设D(x_D,y_D),则S_(△ABC)=1/2|y_A-y_D|·|x_C-x_B|.下面我们来证明这个公式.当△ABC位置如图1时,过C作CF⊥l,过B作BE⊥l,垂足分别为F,E,所以x_D=x_E=x_F,有AD=y_A-y_D,CF=x_C-x_D,BE=x_D-x_B,所以S_(△ABC)=S_(△ABD)+  相似文献   

15.
定理任意平面五边形ABCDE中,有 S_(ABC)·S_(ADE) S_(ABD)·S_(AEC) S_(ABE)·S_(ACD)=0, (1)其中S_(xyz)表△XYZ的有向面积。  相似文献   

16.
题目:锐角△ABC中,∠A的平分线交BC于D,交△ABC的外接圆于点E,自点D分别作DM⊥AB于点M,DN⊥AC于N,证明:S_(△ABC)=S四边形AMEN,(IMO,28—2)。证法/:如图,作出△ABC外接圆直径AL,连接MN,LB,LC,LE,LM,LN。显然,DN,LC同时垂直于AC,DN∥LC,那么S_(△DCN)=S_(△DLN)。同理:S_(△SMB)=S_(△DLM), 则:S_(△ABC)=S四边形AMLN,  相似文献   

17.
题目:已知椭圆x~2/(24) y~2/(16)=1,直线l:x/(12) y/8=1,P是l上一点,射线OP交椭圆于点R,又点Q在OP上且满足|OQ|·|OP|=|OR|~2,当点P在l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线。  相似文献   

18.
如果定义T_(△HKG)=S_(△KHG),当△KHG 与△ABC 有公共内点,—S_(△KHG),当△KHG 与△ABG 无公共内点,则有如下定理:定理3 设点 O 与△ABC 共面,则T_(△BOC)+T(△AOC)+T_(△AOB)=0, (15)且 T_(△BOC)+T_(△AOC)+T_(△AOB)=S_(△ABC). (16)证明:按点 O 所在的位置讨论如下:(Ⅰ)当点 O 在△ABC 的内部或边界上时,△ABC 被分割为△BOC,△AOC 和△AOB(当 O 在边界上时,当中有的是退化三角形),所以有T_(△BOC)=S_(△BOC),T_(△AOC)=S_(△AOC),T_(△AOB)=S_(△AOB),且其和等于 S_(△ABC),即得(16)式,且根据定理2的结论1,得  相似文献   

19.
性质已知△ABC 及点 P,若λ_1 λ_2 λ_3=λ_1,λ_2,λ_3都是非零实数,则△PBC,△PCA,△PAB 的面积之比为|λ_1|:|λ_2|:|λ_3|.1 性质证明证明如图1,作向量=λ_1=λ_2,=λ_3,则点 P 为△A′B′C′的重心。所以S_(△PBC)=1/(|λ_2|·|λ_3|)·S_(△PB′C′)  相似文献   

20.
三点共线定理是指:如图1,若∠BAD=α,∠CAD=β,AB=a,AC=b,AD=m,那么,B、D、C三点共线的充要条件是。 sin(α+β)/m=sinβ/a+sinα/b。证明:∵B、D、′C三点共线的充要条件是 S_(△ABC)=S_(△ABD)+S_(△ADC)(?)1/2ab sin(α+β) =1/2am sinα+1/2bm sinβ(?)sin(α+β)/m =sinβ/a+sinα/b。证毕。有些几何问题采用上述定理求解,大有以简驭繁,化难为易,新颖轻巧,别有奇妙之效。下面试举  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号