首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

2.
三角函数最值问题 ,其求法颇多 ,笔者根据多年的教学实践 ,将其化归为以下几种常见类型 ,供读者参考 .一、利用三角函数的值域 | sinx|≤ 1,| cosx|≤ 11. y =asinx +basinx +d或者 y =acosx +bccosx +d型例 1 求函数 y =3- 2 cosx2 +cosx 的最值 .解 :2 y +ycosx =3- 2 cosx,( 2 +y) cosx =3- 2 y,cosx =3- 2 y2 +y,∵ |cosx|≤ 1,∴ 3- 2 y2 +y ≤ 1,( 3- 2 y) 2≤ ( 2 +y) 2解得 13≤ y≤ 5,∴ ymax =5,ymin =13.点评 :此题利用反函数法求出 cosx的表达式后利用余弦函数的有界性求得最值 .2 .和积互化型例 2 求函数 y =sinx[sinx - sin…  相似文献   

3.
均值不等式是解决最值的重要工具,但由于其约束条件苛刻,不少同学在使用时常常顾此失彼,导致解题失误.下面以同学们易陷于的误区举例分析如下:一、忽视等号成立条件例1求y=sinxcosx+sinx1cosx(0相似文献   

4.
我们知道,asinx+bcosx=a2+b2sin(x+φ),其中ab≠0,tanφ=ab,这个公式叫做辅助角公式.该公式可将异名三角函数化为同名三角函数,在解题中具有广泛的应用.现举例说明,以引起同学们的重视.一、求最值例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx的()(A)最大值是1,最小值是-1(B)最大值是1,最小值是-21(C)最大值是2,最小值是-2(D)解最大值是2,最小值是-1f(x)=sinx+3cosx=2sinx+3π,因为-2π≤x≤2π,所以-6π≤x+π3≤65π,所以-21≤sinx+3π≤1,所以-1≤f(x)≤2·故选(D).例2求函数y=sin2+2sinx·cosx+3cos2x的最小值,并写出使函数y取最小值的解x…  相似文献   

5.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

6.
数学问答     
1.已知函数f(x)=(sinx cosx)22 2sin2x-cos22x,(1)求此函数的定义域、值域,(2)若f(x)=2,-4π相似文献   

7.
三角函数的最值问题,是一个比较复杂的问题,涉及范围广,方法典型独特,解法多种多样,又有很独特的技巧性,是三角函数的重点和难点内容之一.现把在教学中常见的几种类型及解法归纳如下,供参考.1.对于形如y=asinx+b或y=acosx+b(a≠0)的三角函数最值问题,可从中解出sinx或cosx,再利用正弦(或余弦)函数的有界性(|sinx|≤1或|cosx|≤1),便可求出原函数的最小值为b-|a|,最大值为b+|a|.【例1】求函数y=sin(x-π4)·cosx的最小值和最大值.解:∵y=12sin(2x-π4)+sin(-π4)=12sin(2x-π4)-24,∴ymin=-24-12=-2+24,ymax=-24+12=2-24.2.对于形如y=asinωx…  相似文献   

8.
学生在三角函数的学习过程中,经常会出现因审题不清、思考不周而造成的解题错误,仔细究其原因,是由于陷入以下几个误区.误区之(一):忽略角的范围例1:已知sinx+cosx=31(00,可将x的范围缩小到(π2,3π4),再由π<2x<32π得出cos2x=-!917.误区之(二):忽略定义域、值域的讨论例2:求函数y=12-ttaannx2x的周期.错解:∵函数y=12-ttaannx2x=tan2x,∴T=π2.分析:上面错解忽略了对函数定义域的讨…  相似文献   

9.
《高中生》2007,(24)
根据三角函数的图像分析其性质1.三角函数的定义域(1)函数y=tanx的定义域是{x|x≠kπ π/2,k∈Z}或(kπ-π/2,kπ π/2)(k∈Z).上述两种定义域的表示法都需要掌握,即角x不能取终边在y轴上的角.(2)函数y=sinx和y=cosx的定义域都是R.2.三角函数的值域(1)函数y=sinx和y=cosx的值域均为[-1,1],函数y=tanx的值域为R.(2)复合三角函数的值域问题比较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换然后再来求值域.一些常用的三角函数的值域要熟记.  相似文献   

10.
三角函数中经常遇到求形如"y=asinx+bcosx+cdsinx+ecosx+f"型函数值域,对这一类分式型三角函数值域,从不同思维层次思考的求解方法不同,下面举一例说明其解法.题目:求函数f(x)=1+sinx2+cosx的值域.1.利用辅助角公式求解由y=1+sinx2+cosx变形为ycosx-sinx=1-2y可得y2+1cos(x+φ)=1-2y,其中φ由tanφ=-1y2+1确定.因为|cos(x+φ)|≤1,所以|1-2y|≤  相似文献   

11.
一、求函数的最值例1设-π≤x≤π,求y=1+sinx+cosx+sinxcosx的最值.解设t=sinx+cosx,则sinxcosx=t2-12,y=1+t+t2-12=(t+1)22(-2√≤t≤2√).当t=-1,即x=π或x=-π时,ymin=0;当t=2√,即x=π4时,ymax=32+2√.二、求函数的值域例2求y=sin2x2(1+sinx+cosx)的值域.解设t=sinx+cosx,则sin2x=2sinxcosx=t2-1,y=t2-12(1+t)=t-12(-2√≤t≤2√且t≠-1),故所求函数的值域为犤-2√+12,-1)∪(-1,2√-12犦.三、求sinx+cos…  相似文献   

12.
【例1】 求函数 y=lg(8sinx+14x-1π-6cosx+14x-1π)的 值域. 错解:令x+14x-1π=θ,则 y=lg(8sinθ-6cosθ)=lg10sin(θ-φ) ≤lg10=1(其中φ=arctan34),于是函数值 域为(-∞,1]. 辨析:上述解答没有考虑函数 θ=x+14x-1π的反函数存在条件, 故上述解答有误. 正解:上述解法中,因为方程 …  相似文献   

13.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

14.
在直角坐标系xoy中,各象限的角平分线连同轴、y轴共八条射线,它们把直角坐标系分成八个区域,在各射线上标上相应的sinα+cosα的值,就可以很方便地判断出α的范围。如上图建立坐标系,设sinα+cosα=x,且α∈〔02π〕,A(1,1).〔结论1〕若1相似文献   

15.
在三角函数教学过程中 ,经常发现学生在解决一些三角函数问题时由于审题不清 ,思考不严密 ,造成解题的错误 .仔细分析其中原因 ,一般有如下几个方面 .一、忽视对角的范围的进一步分析例 1 已知sinx+cosx =13 ( 0 0 ,我们可将x的范围缩小到 π2 ,3π4,再由π<2x<3π2 得出cos 2x =-179.例 2 已知α ,β为锐角 ,cosα=17,sin(α+β) =5 314 ,求 β.…  相似文献   

16.
三角函数由于内容繁杂、公式众多、变换复杂,同学们在解题时稍有不慎就会进入误区且不易觉察,本文列举几类常见错误并分析如下,供参考.一、忽视定义域致误例1 求函数y=4sinxcosx/1+sinx+cosx的值域.错解:令sinx+cosx= 2 sin(x+π/4)=t,则  相似文献   

17.
数学思想是研究和解决数学问题和有关实际问题的基本指导思想.求解数学问题时,若能正确地运用数学思想,则可提高解题效率.本文举例介绍在求解三角问题时的常用数学思想.一、函数思想例1已知x3+sinx-2a=0,x∈[-π2,π2],4y3+sinycosy+a=0,y∈[-π4,π4],求sin(x+2y)的值.分析:从已知条件所具有的特征出发,可构造一个新的函数f(x)=x3+sinx,利用该函数的单调性,找出x与2y的关系,从而获得解答.解:令函数f(x)=x3+sinx,由x3+sinx-2a=0,得2a=x3+sinx=f(x).又由4y3+sinycosy+a=0,得2a=-8y3-2sinycosy=(-2y)3+sin(-2y)=f(-2y),∴f(x)=f(-2y),∵x,-2y…  相似文献   

18.
我们知道复合函数y=sin(arc sinx)在定义域x∈[-1,1]上都有sin(arc sinx)=x.对于复合函数y=arc sin(sinx)的问题,现行教材仅讨论了x∈[-πc/2,π/2]时,arc sin(sinx)=x的情形,实际上,这个复合函数的定义域是x∈R,而值域是y∈[-  相似文献   

19.
在很多实际问题中 ,我们要面对各式各样的最值问题 ,利用三角函数的最值 ,如正、余弦函数y=Asinx ,y =Acosx的有界性 ,数学中的均值不等式 ,函数的单调性等知识结合起来 ,常常能使问题化腐朽为神奇 ,在解题的思路、技巧上 ,有章可依、有规可寻 ,使问题得到快速、圆满的解决 现举数例加以说明 :例 1:设f (x) =2sinxcosx 52sinx cosx ,x∈ [0 ,π2 ],(1) ,求f (π12 ) ,(2 )求f (x)的最小值 例 2 :求f (θ) 4sinθcosθ - 1sinθ cosθ 1,θ∈ [0 ,π2 ]的最值 上两例是典型的三角函数最值应用题 ,其思路可能是利用正、余弦函数的有界性 |sinx|≤ 1,|cosx|≤ 1或利用均值不等式、或利用函数的单调性 ,经过适当三角变换 ,使问题得到解决 例 1求解如下 :f (x) =2sinxcosx 52sinx cosx =sin2x 522sin (x π4 ),当x =π12 时 ,f (π12 ) =sin π6 522sin π3=6 注意f (x) =1 2s...  相似文献   

20.
本文以 2 0 0 4年各地高考三角题为例 ,就题型与策略谈几点拙见 ,以供参考 .1.用公式asinα+bcosα =a2 +b2 sin(α+φ)化为一个角的某个三角函数 .【例 1】 求函数y=sin4 x+2 3sinxcosx-cos4 x的最小正周期和最小值 ,并写出该函数在 [0 ,π]上的递增区间 .解 :y =sin4 x+2 3sinxcosx-cos4 x=3sin2x-cos2x =2sin( 2x-π6)故此函数的周期为π ,最小值为 -2 ,[0 ,π3 ]为递增区间 ,[23 π ,π]为递增区间 .练习 1:求函数y=sinx -12 cosx(x∈R)的最大值 .2 .通过化简转化为以tanα为主元的代数式 .【例 2】 已知tan(α+π4) =2 ,求 12sinαc…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号