首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding nature of science (NOS) is considered critical to the development of students’ scientific literacy. However, various studies have shown that a large number of elementary and secondary science teachers do not possess an adequate understanding of NOS. This study investigated how elementary teachers’ understanding of NOS was impacted through a 1-year professional development program in Chile that included NOS instruction as a theme throughout two types of mini-courses in the program. Twelve teachers attended a 1-year development program focused on improving teacher content knowledge and included the instruction of NOS embedded in two self-contained NOS mini-courses (36 h) and two lessons (3 h each) within five science content mini-courses (30 h). The Views of NOS (version D+) questionnaire and interviews were used to assess teachers’ understanding of NOS at the beginning (January) and end of the program (December). Elementary teachers’ understanding of the creative, inferential, and tentative aspect of NOS showed improvement. According to the teachers’ perceptions, the most significant activities for improving their NOS understanding were decontextualized activities in both types of mini-courses (self-contained NOS and science content mini-courses). The implications for professional development programs are also discussed.  相似文献   

2.
The purpose of this study was to investigate changes in preservice teachers’ understanding of the nature of science (NOS) as a result of four activity-based interventions that represent three instructional approaches used in a middle grades science methods course. Ten participants’ understanding of NOS and their perceptions about the activity-based interventions were investigated. Data were collected using open-ended questionnaires and in-depth interviews before and after the interventions. Written artifacts and recorded group discussions were collected during the interventions. The results of this study showed that inclusion of various approaches to teaching NOS can contribute to developing preservice teachers’ understanding of NOS. The activities complemented each other in the teaching of the NOS components. In addition, the preservice teachers perceived that the four interventions were helpful in improving their understanding of NOS and in preparing them for future teaching.  相似文献   

3.
The nature of science (NOS) has become a central goal of science education in many countries. This study sought an understanding of the extent to which a nature of science course (NOSC), designed according to the conceptualization of pedagogical content knowledge (PCK) for teaching nature of science (NOS), affects in-service science teachers’ understanding and learning of NOS, and their orientations towards teaching it. A qualitative research approach was employed as a research methodology, drawing upon pre- and post-instruction NOS questionnaires, field notes, and in-service teachers’ weekly journal entries and assignments. Open-ended NOS questionnaires, used to assess participants’ understandings of NOS, were analysed and categorized as either informed, partially informed and naive. Other qualitative data were analysed through an inductive process to identify ways in-service teachers engaged and learned in the NOSC. The results indicate that at the beginning of the course, a majority of the in-service science teachers held naive understandings of NOS, particularly with respect to the definition of science, scientific inquiry, and differences between laws and theories. They viewed implicit project-based science and science process skills as goals of NOS instruction. By engaging in the course, the in-service science teachers developed an understanding of NOS and orientations to teaching NOS based on various elements, especially reflective and explicit instruction, role modelling, and content- and non-content embedded instruction. The aim of this study is to help science teacher educators, consider how to support and develop science teachers’ understandings of NOS while being mindful of PCK for NOS, and develop methods for teaching NOS frameworks.  相似文献   

4.
5.
Study provides qualitative analysis of data that answers the following research question: how college science faculty teach science and NOS and incorporate aspects of NOS and the history of science into their undergraduate courses? Study concentrates on four cases and more specifically on three introductory science classes and on four instructors who taught those courses. These instructors were chosen as case studies to explore in greater detail what occurs inside introductory science courses in one particular higher institution in the Northeastern United States. Participants’ teaching styles are presented through a combined and detailed presentation of interview data and classroom observations supported with examples from their classroom activities. Constant comparative approach was used in the process of organizing and analyzing data. Findings revealed that participants preferred to use the traditional teacher-centered lecturing as their teaching style and whose main concern was to cover more content, develop the problem solving skills of their students, and who wanted to teach the fundamental principles of their subjects without paying special importance to the NOS aspects. The study also revealed that other variables of teaching science, such as large class size, lack of management and organizational skills, teaching experience, and instructors’ concerns for students’ abilities and motivation are more important for these scientists then teaching for understanding of NOS.  相似文献   

6.
Science education video game research points toward promising, but inconclusive results in both student learning outcomes and attitudes. However, student-level variables other than gender have been largely absent from this research. This study examined how students’ reading ability level and disability status are related to their video game-playing behaviors outside of school and their perceptions about the use of science video games during school. Thirty-four teachers and 876 sixth- through ninth-grade students from 14 states participated in the study. All student groups reported that they would prefer to learn science from a video game rather than from traditional text, laboratory-based, or Internet environments. Chi-square analyses indicated a significant association between reading ability level, disability status, and key areas of interest including students’ use of video games outside of school, their perceptions of their scientific abilities, and whether they would pursue a career in the sciences. Implications of these findings and areas for future research are identified.  相似文献   

7.
Research in Science Education - Primary teachers’ attitudes have been shown to strongly influence both their intention to teach science, and ultimately student engagement and learning...  相似文献   

8.
This study explored preservice elementary teachers' and their mentors' understanding of the essential features of inquiry-based teaching through the use of evidence-based reflection. The web-based video analysis tool (VAT) system was used to support preservice teachers' and mentors' evidence-based reflection during field experiences. Major data sources included VAT reflections and individual interviews. Data analysis indicated that the preservice teachers had been involved in various activities designed to support their understanding of inquiry features in a science methods class; they did not implement all of the features in their actual teaching. Both preservice teachers and mentors had difficulty connecting appropriate inquiry features to each teaching episode, which indicates their lack of understanding of inquiry. Both the preservice teachers and mentors had different levels of understanding for each feature. That is, they tended to understand certain features better than others. They interpreted each feature of inquiry-based science teaching too broadly. They also either had a teacher-centered view or tended to focus on issues unrelated to science teaching.  相似文献   

9.

The Next Generation Science Standards support understanding of the nature of science as it is practiced and experienced in the real world through interconnected concepts to be imbedded within scientific practices and crosscutting concepts. This study explored how fourth and fifth grade elementary students’ views of nature of science change when they engage in a technology-enhanced, scientific inquiry-oriented curriculum that takes place across formal and informal settings. Results suggest that student engagement in technology-enhanced inquiry activities that occur in informal and formal settings when supported through explicit instruction focused on metacognitive and social knowledge construction can improve elementary students’ understanding of nature of science.

  相似文献   

10.
Current research indicates that students with enhanced knowledge networks are more effective in learning science content and applying higher order thinking skills in open-ended inquiry learning. This research examined teacher implementation of a novel teaching strategy called “web diagramming,” a form of network mapping, in a secondary school earth science class. We report evidence for student improvement in knowledge networking, questionnaire-based reports by the students on the merits of web diagramming in terms of interest and usefulness, and information on the collaborating teacher’s perceptions of the process of implementation, including implications for teacher education. This is among the first reports that teachers can be provided with strategies to enhance student knowledge networking capacity, especially for those students whose initial networking scores are among the lowest.  相似文献   

11.
12.
Research has identified the value of students constructing their own representations of science concepts using modes such as writing, diagrams, 2-D and 3-D models, images or speech to communicate meaning. ??Slowmation?? (abbreviated from ??Slow Animation??) is a simplified way for students, such as preservice teachers, to make a narrated animation using a combination of modes. In this study, 13 preservice primary teachers learned how to create a slowmation during a two-hour class in a science methods course and then created one about an allocated science topic as an assignment. The research question that guided this study was, ??What are the preservice teachers?? perceptions of making a slowmation and how was the science concept represented in the animation??? Data included pre and post individual interviews, concept maps constructed during the interviews and the animations as artifacts. Three case studies provide a window into the perceptions of preservice teachers making a slowmation and show how they represented their concept. Slowmation is a new form of student-generated representation which enables them to use their own technology to construct a narrated animation as a multimodal representation to explain a science concept.  相似文献   

13.
Critiquing and adapting curriculum materials are essential teaching practices but challenging for many preservice teachers. This study explores the use of educative curriculum materials—materials intended to support both teacher and student learning—to help preservice elementary teachers develop their pedagogical design capacity for critiquing and adapting lessons. Preservice teachers received educative supports highlighting pedagogical principles and rationales for those principles. When provided with educative supports, most individuals attended to the principles targeted in the supports, engaged in an in-depth analysis with regard to the principles, and used the rationales from the supports to justify their analyses. However, few continued to do so in subsequent analyses when they no longer received support. Implications for science teacher education and curriculum design are discussed.  相似文献   

14.
Science communication competence (SCC) is an important educational goal in the school science curricula of several countries. However, there is a lack of research about the structure and the assessment of SCC. This paper specifies the theoretical framework of SCC by a competence model. We developed a qualitative assessment method for SCC that is based on an expert–novice dialog: an older student (explainer, expert) explains a physics phenomenon to a younger peer (addressee, novice) in a controlled test setting. The explanations are video-recorded and analysed by qualitative content analysis. The method was applied in a study with 46 secondary school students as explainers. Our aims were (a) to evaluate whether our model covers the relevant features of SCC, (b) to validate the assessment method and (c) to find characteristics of addressee-adequate explanations. A performance index was calculated to quantify the explainers’ levels of competence on an ordinal scale. We present qualitative and quantitative evidence that the index is adequate for assessment purposes. It correlates with results from a written SCC test and a perspective taking test (convergent validity). Addressee-adequate explanations can be characterized by use of graphical representations and deliberate switches between scientific and everyday language.  相似文献   

15.
This study examines Chinese pre-service teachers’ (N?=?30) views on the nature of science (NOS) and how Chinese culture influences their views. Participants were from two teachers’ universities in eastern China. As an exploratory and interpretive study, a scenario-based interview approach was adopted. The results indicated that the participants held unique views about the five key aspects of NOS. Many participants have alternative and contemporary views of NOS, but few possess classical views. In fact, teachers adopted features of the Confucian Doctrine of the Mean either consciously or unconsciously to account for their views of NOS. This research reflects that the Doctrine of the Mean affected Chinese teachers’ views of NOS, making them rather deficient in their understandings of classical NOS. Based on empirical data, it is argued that science teacher training in China should focus on the content and objectives of classical NOS, rather than just teaching contemporary views of NOS. Taking Chinese culture into consideration, science teacher education in China cannot entirely import the strategies of teaching the classical views of NOS from the developed world, but should develop, design and contextualize local strategies that are suitable for the training of Chinese science teachers. Some issues for further investigation of learners’ views of NOS in non-Western contexts are suggested as implications from this study.  相似文献   

16.
Science & Education - Nature of science (NOS) is considered an important aspect of scientific literacy. Despite efforts in guiding school students to develop more adequate NOS views, little is...  相似文献   

17.
In recent years, there has been an increasing interest among educational researchers in exploring the relationships between learners’ epistemological beliefs and their conceptions of learning. This study was conducted to investigate these relationships particularly in the domain of science. The participants in this study included 407 Taiwanese college science‐major students. All of them responded to two major questionnaires, one assessing their scientific epistemological beliefs (SEBs) and the other one probing their conceptions of learning science (COLS). The SEB questionnaire included four factors: “certainty,” “source,” “development,” and “justification” of science knowledge. The COLS survey consisted of six factors in a hierarchical order, that is, learning science as “memorizing,” “preparing for tests,” “calculating and practicing,” “increasing one’s knowledge,” “application,” and “understanding and seeing in a new way.” The students’ confidence and interest toward learning science were also assessed by additional questionnaire items. Stepwise regression analyses, in general, showed coherence between students’ SEBs and their COLS, indicating that the sophistication of SEBs was consistent with less agreement with lower‐level COLS (such as “memorizing” and “preparing for tests”) as well as more agreement with higher‐level COLS (such as “understanding and seeing in a new way”). However, the SEB’s “justification” factor was positively related to almost all of COLS factors from the lower‐level to higher‐level. This study finally found that among all of the SEB and COLS factors, the “preparing for tests” factor in COLS was the solely significant variable for predicting students’ interest in science and confidence toward learning science.  相似文献   

18.

This study has two aims. The first one is to reveal the science teacher candidates’ misconceptions about the density by using a four-tier diagnostic test, and the second one is to determine to what extent science teacher candidates have scientific knowledge, lack of knowledge, and misconceptions about the density. In order to achieve these aims, a four-tier density diagnostic test was developed with the KR-20 reliability coefficient of 0.753 based on the correct answers, and the KR-20 reliability coefficient of 0.528 based on the misconceptions. To determine the misconceptions about the density with the developed test, data were collected from a total of 470 science teacher candidates from seven different universities in Turkey. With the developed four-tier diagnostic test, 48 different misconceptions were revealed. The results of the research showed that about one fourth of science teacher candidates had a misconception about the density and that the ratio of six of the resulting misconceptions was over 10%. It may be suggested that this study conducted on science teacher candidates should also be conducted on middle and high school students and experimental studies should be carried out to eliminate the misconceptions that emerged in this study.

  相似文献   

19.
Science & Education - Current visions of science education advocate that students should engage with science in the classroom in ways that mirror the work of scientists in order to develop...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号