首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>求数列通项在高考中属于常考内容,本文归纳整理了几种方法,供参考.一、已知a_1和a_n=a_(n-1)+f(n)型,其中f(n)可求和例1已知数列{a_n}满足a_(n+1)=a_n+3n+2,且a_1=2,求a_n.解由a_(n+1)=a_n+3n+2知a_(n+1)-a_n=3n+2,a_n-a_(n-1)=3n-1.a_n=(a_n-a_(n-1))+(a_(n-1)-a_(n-2))+…+(a_2-a_1)+a_1=(3n-1)+(3n-4)+……+5+2  相似文献   

2.
形如a_(n 1)=pa_n q(p·£≠0,且P≠1)在历年来的高考中屡次出现,足以说明这类数列递推公式应用之广。现举数例说明。处理方法:a_(n 1)=pa_n q可变形为a_(n 1) c=p(a_n c)即a_(n 1) =pa_n c(p-1),令c(p-1)=q,解得c=q/p-1,从而构造等比数例q_(an) q/(p-1)分解它。例1、己知数列[an]满足a_1=1,a_(n 1)=2a_n 1(n≥1,n为自然数)求数列[a_n]的通项公式,(06年福建理工高考试题22题第一小题)解∵a_(n 1)=2a_n 1∴a_(n 1) 1=2(a_n 1)∵[a_n]是以a_n 1=2为首项,公比为2的等比数列  相似文献   

3.
<正>类型一:累加法形如:a_n=a_(n-1)+f(n)(其中f(n)不是常值函数)例1已知数列{a_n}满足a_1=3,2/a_n-a_(n+1)=n(n+1),则a_n=____。方法指导:先将递推公式变形为a_n-a_(n-1)=f(n),令n=2,3,4,…,n,再将这n-1个式子相加,得a_n-a_1=f(2)+f(3)+…+f(n)。所以,a_n=a_1+f(2)+f(3)+…+f(n)=a_1+  相似文献   

4.
<正>求递推数列的通项公式的方法较多,技巧性很强.本文主要探究形如a_(n+1)=pa_n+f(n)(p为常数,n∈N*)的递推数列通项公式的求法.一、引例例1已知数列{a_n}满足a_1=3,a_(n+1)=2a_n+5n+1(n∈N*),求该数列的通项公式.解(辅助数列法)由a_(n+1)=2a_n+5n+1,得a_(n+1)+5(n+1)+6=2(a_n+5n+6).(1)  相似文献   

5.
例1已知数列{a_n}中,a_1=1,对任意自然数n都有a_n=a_(n-1)+1/(n(n+1)),求a_n.解:由已知得a_n-a_(n-1)=1/(n(n+1)),a_(n-1)-a_(n-2)=1/((n-1)n),…,a_3-a_2=1/(3×4),a_2-a_1=1/(2×3).以上n-1个式子累加,并利用1/(n(n+1))=1/n-1/(n+1),得a_n-a_1=1/(2×3)+…+1/((n-2)(n-1))+1/((n+1)n)+1/(n(n+1))=1/2-1/(n+1),∴a_n=3/2-1/(n+1).点评:求形如a_n-a_(n-1)=f(n)的数列通项,可用累加法.  相似文献   

6.
数列递推公式的意义:若已知数列的第一项a_1且任一项a_n与前一项a_(n-1)之间的关系可以用一个公式表示.类型1形如a_(n+1)=a_n+f(n).解法:把原递推公式转化为a_(n+1)-a_n=f(n),利用累加法(逐差相加法)求解.例1已知数列{a_n}满足a_1=1/2,a_(n+1)=  相似文献   

7.
一、用矩阵分解多项式的一次因式:定理:n次多项式f(x)=a_0x~n+a_1x~(n-1)…+a_n在数域R中有一次因式的充要条件是存在一个秩为1的2×n阶矩阵A=(a_0 a_(11) a_(21)……a_(n-2.1) a_(n-1.1) (a_(12) a_(22) a_(32)……a_(n-1.2) a_n)  相似文献   

8.
<正>一、数列本身各部分知识的综合例1已知各项均为正数的数列{a_n}的前n项和为S_n,且满足S_1>1,6S_n=(a_n+1)(a_n+2),n∈N_+,求{a_n}的通项公式。解析:利用n≥2时S_n-S_(n-1)=a_n将已知条件6S_n=(a_n+1)(a_n+2),n∈N+转化为a_n与a_(n-1)之间的关系。由a_1=S_1=1/6(a_1+1)(a_1+2),解得a_1=1或a_1=2,由假设a_1=S_1>1,因此a_1=2。又由a_(n+1)=S_n+1-  相似文献   

9.
两恒等式a_n=a_1·(a_2/a_1)……(a_n/a_(n-1))及a_n=a_1+(a_2-a_1)+…+(a_n-a_(n-1))分别被称之为等比恒等式与等差恒等式。在处理很多数列问题时,若能恰到好处地利用这两个恒等式,则会给求解带来很多方便,下面略举几例。 例1 (2002年浙江等21省市高考题)设数列{a_n}满足a_(n+1)=a_n~2-na_n+1,n∈N~+。 (1)当a_1=2时,求a_2、a_3、a_4,并由此猜想出a_n的一个通项公式。 (2)当a_1≥3时,证明对所有的n≥1有: (i)a_n≥n+2; (ii)1/(1+a_1)+1/(1+a_2)+…+1/(1+a_n)≥1/2。 简解:(1)略。 (2)(i)用数学归纳法:①当n=1,a_1≥3=1+2结论成立。  相似文献   

10.
珠联璧合     
1.问题:数列{a_n}中,已知a1=0a2=1,a_(n+1)=n(a_n+a_(n-1),求通项a_n 2.问题背景:n个元素m1,m2,…,m_n重新排列不排在原来位置的排列种数记为a_n,求a_n.1 2 3 4 5… n十1个元素重新排列不排在原来位置的排法为a_(n+1). a1不在1号位,则a1有n种排法. a2排在1号位,其它n-1个元素不排在原来位置的排法有a_(n-1)种. a2不排在1号位,则除a2的其它n个元素不排在原来位置的排法有a_n种. 所以a_(n+1)=n(a_n+a_(n-1),显然a1=0,a2=1.  相似文献   

11.
设n是大于1的自然数,a>0。易知a(?)1时,a-1与n-(1+a+…+a~(n-1))总是异号。所以, (a-1)[n-(1+a+…+a~(n-1))]≤0。即(a-1)(n-(1-a~n)/(1-a))≤0。整理,有a(n-a~(n-1))≤n-1。①显然,①式等号成立的充分必要是a=1。如果a_1,a_2,…,a_n是n个正数,在①中令a=(a_1/((a_1+a_2+…+a_n)/n)~(1/(n-1)),则有a_1~(1/(n-1))·(a_2+…+a_n)/(n-1)≤≤((a_1+a_2+…+a_n)/n)~(n~(n-1)),即((a_1+a_2+…+a_n)/n)~n≥≥a_1((a_1+a_2+…+a_n)/(n-1))~(n-1)。②再在①中令a=(a_2/(a_2+…+a_n)/(n-))~(1/(n-2)),重复上述步骤,并结合②,有  相似文献   

12.
近几年的数学竞赛题中,出现了满足a_(n+k)=a_n(n,k∈N,k是常数)对所有自然数n都成立的数列{a_n},这样的数列被称作周期数列.一些文章指出:满足f(n)=f(n-1)+f(n+1)的数列{a_n},其中a_n=f(n)(n≥1)是以6为周期的数列;满足a_(n+1)=(1+a_n)/(1-a_n)的数列{a_n}是以4为周期的  相似文献   

13.
<正>在数列这一章中,由递推公式求通项公式是本章的一个重要知识内容,也是一个难点与考点.以下几类递推数列的通项公式我们是可以解决的:(1) a_(n+1)=pa_n+A(n),其中A(n)为整式;(2) a_(n+1)=pa_n+qn;(3) a_(n+1)=pa+n+A(n) qn;(3) a_(n+1)=pa+n+A(n) qn,其中A(n)为整式.由此引发思考,对于形如a_(n+1)=pa_n+B(n),其中B(n)为分式,此类递推数列是否  相似文献   

14.
数列是中学数学的重要内容之一,有关数列的习题形式多样,解法灵活,除要求较高的分析问题和解决问题的能力之外,还必须具有清晰的概念和比较坚实的基础知识,否则常因概念不清而导致谬误。举例于下: 一、判别数列的类型不确切。例1 已知数列{a_n}满足a_1=1,a_2=7,且a_n=2a_(n-1)+3a_(n-2)(n≥3) ①求a_n。错解:将2a_(n-1)拆成3a_(n-1)—a_(n-1)后,①式可化为 a_n+a_(n-1)=3(a_(n-1)+a_(n-2),从而 a_n+a_(n-1)/a_(n-1)+a_(n-2)=3  相似文献   

15.
一本杂志上刊登过如下一道题目: 题一:设,f(x)=(x~2-4)~(1/2)(x≤-2).(1)求f~(-1)(x);(2)设a_1=1,a_n=f~(-1)(a_(n-1))(n≥2,n∈N),求a_n;(3)求sum from i=1 to n 1/(a_1+a_i+1)的值该题作为函数与数列的综合题在教学中广为流传,通常简解如下解:(1)函数,f(x)=(x~2-4)~(1/2)(定义域为x≤—2,值域为y≥0)的反函数为f~(-1)(x)=-(x~2+4)~(1/2)(定义域为x≥0,值域为y≤-2) (2)∵a_1=1,a_n=f~(-1)(a_(n-1))由迭代法得:a_n=-(a_(n-1)~2+4)~(1/2)=-(a_(n-2)~2+2×4)~(1/2)=…=-(a_1~2+(n-1)4)~(1/2)=-(4n-3)~(1/2)(亦可由a_n~2=a_(n-1)~2+4,n=2,3,…n,累加而得) (3) 注意到 a_n~2-a_(n-1)~2=4,  相似文献   

16.
本文拟将一代数定理的应用介绍如下,供同学们参考 [定理] 已知a_0+a_1+a_2+……+a_(n-1)+a_n=0,求证:一元n次方程a_0x~n+a_1x~(n-1)+a_2x~(n-2)+……+a_(n-1)x+a_n=0(a_0≠0)有一个根为1。证明:(略)下面谈一下这个定理的应用: [例1] 已知方程(m+1)(x~2-x)=(m-1)·(x-1)的两根绝对值相等而符号相反,求m的值。解:原方程变形为(m+1)x~2-2mx+(m-1)=0,由题设知m+1≠0,但m+1-2m+m-1=0,∴此方程有一个根为1。而原方程两根绝对值相等、符  相似文献   

17.
一对等比数列前n项和的公式另一种证明的异议贵刊1985年第3期《等比数列求和公式的另一种证明》一文中,给出了等比数列前n项和的公式(以下称公式)的又一证法。转述如下: “对于等比数列由它的定义有 a_2/a_1=a_3/a_2=…=a_n/a_(n-1)=q (a_2+a_3+…+a_n)/(a_1+a_2+…+a_(n-1))=q (S_-a_1)/(S_n-a_n)=q (S_n-a_1)/(S_n-a_1q~(n-1))=q 整理得 S=a_1(1-q~n)/(1-q) (q≠1)”  相似文献   

18.
已知数列{a_n}中,a_1=p,a_(n 1)=qa_n r,求通项公式a_n,其中p、q、r为常数,且q≠0,q≠1。 显然r=0时,a_(n 1)=qa_n,这时{a_n}为等比数列,易推得a_n=pq~(n-1);当r≠0,q=1,a_(n 1)=a_n r,{a_n}是等差数列,易推得a_n=a_1 (n-1)r。  相似文献   

19.
数列的通项公式揭示了这个数列的内在规律。中学教材中,对等差数列、等比数列作了重点介绍,本文想在此基础上作一些推广。首先我们定义:multiply from i=k to n f(i)=1(k>n) 定理一:在数列{a_n}中已知a_1且满足 a_n=f(n)a_(n-1)+g(n) (n=2,3,4…)则a_n=a multiply from i=2 to n f(i)+sum from i=2 to n[g(i) multiply from i=i to n-1 f(i+1)] 证明:1°n=2,右边=f(2)a_1+g(2)=a_2 2°假定当n=k时命题成立即  相似文献   

20.
公式 a_n=S_n-S_(n-1)看似平常,其实内涵丰富,有着不寻常的功能和应用价值,本文举例如下:例1 已知数列{x_n),满足 x_1=b,x_(n 1)=cx_n d 且 c≠1.求通项公式.解:令 x_n=S_n则 S_(n 1)=cS_n d (1)S_n=cS_(n-1) d (2)(1)-(2)得a_(n 1)=ca_n=c~2a_(n-1)=…=c~(n-1)a_2∴x_n=S_n=a_1 a_2 … a_n  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号