首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Passage ranking has attracted considerable attention due to its importance in information retrieval (IR) and question answering (QA). Prior works have shown that pre-trained language models (e.g. BERT) can improve ranking performance. However, these simple BERT-based methods tend to focus on passage terms that exactly match the question, which makes them easily fooled by the overlapping but irrelevant (distracting) passages. To solve this problem, we propose a self-matching attention-pooling mechanism (SMAP) to highlight the Essential Terms in the question-passage pairs. Further, we propose a hybrid passage ranking architecture, called BERT-SMAP, which combines SMAP with BERT to more effectively identify distracting passages and downplay their influence. BERT-SMAP uses the representations obtained through SMAP to enhance BERT’s classification mechanism as an interaction-focused neural ranker, and as the inputs of a matching function. Experimental results on three evaluation datasets show that our model outperforms the previous best BERTbase-based approaches, and is comparable to the state-of-the-art method that utilizes a much stronger pre-trained language model.  相似文献   

2.
3.
4.
BackgroundLawsonia intracellularis remains a problem for the swine industry worldwide. Previously, we designed and obtained a vaccine candidate against this pathogen based on the chimeric proteins: OMP1c, OMP2c, and INVASc. These proteins formed inclusion bodies when expressed in E. coli, which induced humoral and cellular immune responses in vaccinated pigs. Also, protection was demonstrated after the challenge. In this study, we established a production process to increase the yields of the three antigens as a vaccine candidate.ResultsBatch and fed-batch fermentations were evaluated in different culture conditions using a 2 L bioreactor. A fed-batch culture with a modified Terrific broth medium containing glucose instead of glycerol, and induced with 0.75 mM IPTG at 8 h of culture (11 g/L of biomass) raised the volumetric yield to 627.1 mg/L. Under these culture conditions, plasmid-bearing cells increased by 10% at the induction time. High efficiency in cell disruption was obtained at passage six using a high-pressure homogenizer and a bead mill. The total antigen recovery was 64% (400 mg/L), with a purity degree of 70%. The antigens retained their immunogenicity in pigs, inducing high antibody titers.ConclusionsConsidering that the antigen production process allowed an increment of more than 70-fold, this methodology constitutes a crucial step in the production of this vaccine candidate against L. intracellularis.How to cite: Salazar S, Gutiérrez N, Sánchez O, et al. Establishment of a production process for a novel vaccine candidate against Lawsonia intracellularis. Electron J Biotechnol 2021.https://doi.org/10.1016/j.ejbt.2021.01.002  相似文献   

5.
6.
BackgroundTP73 antisense RNA 1 (TP73-AS1), a newly discovered long non-coding RNA (lncRNA), has been reported to be upregulated in various kinds of tumors, and shows a variable influence on living quality and prognosis of patients. Thus, we conducted a meta-analysis to evaluate the overall prognostic value of the lncRNA TP73-AS1 in cancer patients.ResultsA systematic literature retrieval was carried out using the PubMed, Cochrane Library, EMBASE, and Web of Science databases. We calculated the pooled hazard ratio (HR) and odds ratio (OR) with 95% confidence intervals (CIs) to evaluate the association of TP73-AS1 expression with prognostic and clinicopathological parameters. A total of 15 studies including 1057 cancer patients were finally selected for the meta-analysis. The results demonstrated that high TP73-AS1 expression was significantly associated with shorter overall survival (OS) (HR = 1.97, 95% CI: 1.68–2.31, P < 0.001). According to a fixed-effects or random-effects model, elevated TP73-AS1 expression markedly predicted advanced clinical stage (OR = 3.30, 95% CI: 2.35–4.64, P < 0.001), larger tumor size (OR = 2.37, 95% CI: 1.75–3.22, P < 0.001), earlier lymph node metastasis (OR = 3.28, 95% CI: 1.59–6.76, P = 0.001), and distant metastasis (OR = 4.94, 95% CI: 2.61–9.37, P < 0.001).ConclusionsHigh lncRNA TP73-AS1 expression appears to be predictive of a worse OS and clinicopathologic features for patients with various types of malignant tumors. These results provide a basis for utilizing TP73-AS1 expression as an unfavorable indicator to predict survival outcomes.How to cite: Wang X, Shu K, Wang Z, et al. Prognostic value of long non-coding RNA TP73-AS1 expression in different types of cancer: A systematic review and meta-analysis. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.12.005.  相似文献   

7.
Caffeic acid (CA; 3,4-dihydroxycinnamic acid) is an aromatic compound obtained by the phenylpropanoid pathway. This natural product has antioxidant, antitumor, antiviral, and anti-inflammatory activities. It is also a precursor of CA phenethyl ester (CAPE), a compound with potential as an antidiabetic and liver-protective agent. CA can be found at low concentrations in plant tissues, and hence, its purification is difficult and expensive. Knowledge regarding the pathways, enzymes, and genes involved in CA biosynthesis has paved the way for enabling the design and construction of microbial strains with the capacity of synthesizing this metabolite. In this review, metabolic engineering strategies for the generation of Escherichia coli strains for the biotechnological production of CA are presented and discussed.How to cite: Hernández-Chávez G, Martinez A, Gosset G. Metabolic engineering strategies for caffeic acid production in Escherichia coli. Electron J Biotechnol 2019;38. https://doi.org/10.1016/j.ejbt.2018.12.004.  相似文献   

8.
BackgroundBioremoval of phenolic compounds using fungi and bacteria has been studied extensively; nevertheless, trinitrophenol bioremediation using modified Oscillatoria cyanobacteria has been barely studied in the literature.ResultsAmong the effective parameters of bioremediation, algal concentration (3.18 g·L−1), trinitrophenol concentration (1301 mg·L−1), and reaction time (3.75 d) were screened by statistical analysis. Oscillatoria cyanobacteria were modified by starch/nZVI and starch/graphene oxide in a bubble column bioreactor, and their bioremoval efficiency was investigated. Modifiers, namely, starch/zero-valent iron and starch/GO, increased trinitrophenol bioremoval efficiency by more than 10% and 12%, respectively, as compared to the use of Oscillatoria cyanobacteria alone.ConclusionsIt was found that starch/nano zero-valent iron and starch/GO could be applied to improve the removal rate of phenolic compounds from the aqueous solution.How to cite: Bavandi R, Emtyazjoo M, Saravi HN, et al. Study of nano-structure zero-valent iron and graphene-oxid capability onbioremoval of trinitrophenol from wastewater in a bubble column bioreactor. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.02.003.  相似文献   

9.
BackgroundFermentation strategies for bioethanol production that use flocculating Saccharomyces cerevisiae yeast need to account for the mechanism by which inhibitory compounds, generated in the hydrolysis of lignocellulosic materials, are tolerated and detoxified by a yeast floc.ResultsDiffusion coefficients and first-order kinetic bioconversion rate coefficients were measured for three fermentation inhibitory compounds (furfural, hydroxymethylfurfural, and vanillin) in self-aggregated flocs of S. cerevisiae NRRL Y-265. Thièle-type moduli and internal effectiveness factors were obtained by simulating a simple steady-state spherical floc model.ConclusionsThe obtained values for the Thiéle moduli and internal effectiveness factors showed that the bioconversion rate of the inhibitory compounds is the dominant phenomenon over mass transfer inside the flocs.How to cite: Landaeta R, Acevedo F, Aroca G. Effective diffusion coefficients and bioconversion rates of inhibitory compounds in flocs of Saccharomyces cerevisiae. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.rjbt.2019.08.001  相似文献   

10.
BackgroundMathematical modeling is useful in the analysis, prediction, and optimization of an enzymatic process. Unlike the conventional modeling methods, Monte Carlo method has special advantages in providing representations of the molecule’s spatial distribution. However, thus far, Monte Carlo modeling of enzymatic system is namely based on unimolecular basis, not suitable for practical applications. In this research, Monte Carlo modeling is performed for enzymatic hydrolysis of lactose for the purpose of real-time applications.ResultsThe enzyme hydrolysis of lactose, which is conformed to Michaelis–Menten kinetics, is modeled using the Monte Carlo modeling method, and the simulation results prove that the model predicts the reaction kinetics very well.ConclusionsMonte Carlo modeling method can be used to model enzymatic reactions in a simple way for real-time applications.How to cite: Gao L, Guo Q, Lin H, et al. Modeling of lactose enzymatic hydrolysis using Monte Carlo method. Electron J Biotechnol 2019;41.https://doi.org/10.1016/j.ejbt.2019.04.010  相似文献   

11.
BackgroundRosemary (Rosmarinus officinalis) contains active substances that have desirable properties for industrial and herbal medicine applications, e.g., essential oils (1.5–2.5%), tannins, flavonoids, triterpenes, saponins, resins, phytosterols, rosmarinic acid and many others. The aim of this study was to determine the influence of rosemary extract and 20% rapeseed oil substitution for animal fat on storage changes and inhibition of cholinesterases in liver pâté.ResultsPreliminary research showed that rosemary extract exhibited antioxidative activity in the system of accelerated Rancimat and Oxidograph tests. Then, rosemary extract was used as an ingredient in liver pâté. During the experiment, meat samples were refrigerated and tested on days 1, 5, 8, 12 and 15 after production. The study proved that the substitution of 20% of animal fat with rapeseed oil decreased the content of saturated acids and increased the content of monoenic fatty acids by approximately 5% and polyene fatty acids by 40%.ConclusionsIn addition to antioxidative activity, the rosemary extract affected the health-promoting value of the samples, which inhibited cholinesterase activity during the entire storage period. The extract inhibited AChE more than BChE.How to cite: Bilska A, Kobus-Cisowska J, Kmiecik D, et al. Cholinesterase inhibitory activity, antioxidative potential and microbial stability of innovative liver pâté fortified with rosemary extract (Rosmarinus officinalis). Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.03.007  相似文献   

12.
BackgroundMilk whey, a byproduct of the dairy industry has a negative environmental impact, can be used as a raw material for added-value compounds such as galactooligosaccharides (GOS) synthesis by β-galactosidases.ResultsB-gal42 from Pantoea anthophila strain isolated from tejuino belonging to the glycosyl hydrolase family GH42, was overexpressed in Escherichia coli and used for GOS synthesis from lactose or milk whey. Crude cell-free enzyme extracts exhibited high stability; they were employed for GOS synthesis reactions. In reactions with 400 g/L lactose, the maximum GOS yield was 40% (w/w) measured by HPAEC-PAD, corresponding to 86% of conversion. This enzyme had a strong predilection to form GOS with β(1 → 6) and β(1 → 3) galactosyl linkages. Comparing GOS synthesis between milk whey and pure lactose, both of them at 300 g/L, these two substrates gave rise to a yield of 38% (60% of lactose conversion) with the same product profile determined by HPAEC-PAD.ConclusionsB-gal42 can be used on whey (a cheap lactose source) to produce added value products such as galactooligosaccharides.How to cite: Yañez-Ñeco CV, Cervantes FV, Amaya-Delgado L, et al. Synthesis of β(1→3) and β(1→6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electron J Biotechnol 2021;49. https://dx.doi.org/10.1016/j.ejbt.2020.10.004  相似文献   

13.
BackgroundThe use of agro-industrial wastes to produce high value-added biomolecules such as biosurfactants is a promising approach for lowering the total costs of production. This study aimed to produce biosurfactants using Rhizopus arrhizus UCP 1607, with crude glycerol (CG) and corn steep liquor (CSL) as substrates. In addition, the biomolecule was characterized, and its efficiency in removing petroderivatives from marine soil was investigated.ResultsA 22 factorial design was applied, and the best condition for producing the biosurfactant was determined in assay 4 (3% CG and 5% CSL). The biosurfactant reduced the surface tension of water from 72 to 28.8 mN/m and produced a yield of 1.74 g/L. The preliminary biochemical characterization showed that the biosurfactant consisted of proteins (38.0%), carbohydrates (35.4%), and lipids (5.5%). The compounds presented an anionic character, nontoxicity, and great stability for all conditions tested. The biomolecule displayed great ability in dispersing hydrophobic substrates in water, thereby resulting in 53.4 cm2 ODA. The best efficiency of the biosurfactant in removing the pollutant diesel oil from marine soil was 79.4%.ConclusionsThis study demonstrated the ability of R. arrhizus UCP1607 to produce a low-cost biosurfactant characterized as a glycoprotein and its potential use in the bioremediation of the hydrophobic diesel oil pollutant in marine soil.How to cite: Pele MA, Ribeaux DR, Vieira ER, et al. Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electron J Biotechnol 2019;38. https://doi.org/10.1016/j.ejbt.2018.12.003.  相似文献   

14.
15.
16.
BackgroundFor more than a decade, water-soluble, eco-friendly, biocompatible, and low-toxicity fluorescent nanomaterials have received considerable attention for their numerous in vivo and in vitro applications in biomedical imaging, disease diagnostics, and environmental monitoring. Owing to their tunable photoluminescence properties, carbon-based luminescent nanomaterials have shown great potential in bioimaging, photocatalysis, and biosensing among other applications.ResultsMarine environments provide excellent resources for the fabrication of these nanomaterials, because many marine organisms contain interesting trigger organic compounds that can be used as precursors. Herein, we synthesize multi-color emissive carbon dots (CDs) with an intrinsic photoluminescence quantum yield of 20.46%. These nanostructures were achieved through the one-step hydrothermal treatment of marine polysaccharide chondroitin sulfate, obtained from shark cartilage, in aqueous solution.ConclusionsWe successfully demonstrate the low toxicity of our marine resource-derived CDs in zebrafish, and provide an initial assessment of their possible use as a bioimaging agent. Notably, the newly synthesized CDs localize in the intestines of zebrafish larvae, thereby indicating their biocompatibility and potential use as in vivo dyes.How to cite: Kim KW, Choi TY, Kwon YM, et al. Simple synthesis of photoluminescent carbon dots from a marine polysaccharide found in shark cartilage. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.003.  相似文献   

17.
Chloroplast biotechnology has emerged as a promissory platform for the development of modified plants to express products aimed mainly at the pharmaceutical, agricultural, and energy industries. This technology’s high value is due to its high capacity for the mass production of proteins. Moreover, the interest in chloroplasts has increased because of the possibility of expressing multiple genes in a single transformation event without the risk of epigenetic effects. Although this technology solves several problems caused by nuclear genetic engineering, such as turning plants into safe bio-factories, some issues must still be addressed in relation to the optimization of regulatory regions for efficient gene expression, cereal transformation, gene expression in non-green tissues, and low transformation efficiency. In this article, we provide information on the transformation of plastids and discuss the most recent achievements in chloroplast bioengineering and its impact on the biopharmaceutical and agricultural industries; we also discuss new tools that can be used to solve current challenges for their successful establishment in recalcitrant crops such as monocots.How to cite: Quintín Rascón-Cruz Q, González-Barriga CD, Iglesias-Figueroa BF, et al. Plastid transformation: Advances and challenges for its implementation in agricultural crops. Electron J Biotechnol 2021;51. https://doi.org/10.1016/j.ejbt.2021.03.005  相似文献   

18.
BackgroundThe potential waste canola oil-degrading ability of the cold-adapted Antarctic bacterial strain Rhodococcus sp. AQ5-07 was evaluated. Globally, increasing waste from food industries generates serious anthropogenic environmental risks that can threaten terrestrial and aquatic organisms and communities. The removal of oils such as canola oil from the environment and wastewater using biological approaches is desirable as the thermal process of oil degradation is expensive and ineffective.ResultsRhodococcus sp. AQ5-07 was found to have high canola oil-degrading ability. Physico-cultural conditions influencing its activity were studied using one-factor-at-a-time (OFAT) and statistical optimisation approaches. Considerable degradation (78.60%) of 3% oil was achieved by this bacterium when incubated with 1.0 g/L ammonium sulphate, 0.3 g/L yeast extract, pH 7.5 and 10% inoculum at 10°C over a 72-h incubation period. Optimisation of the medium conditions using response surface methodology (RSM) resulted in a 9.01% increase in oil degradation (87.61%) when supplemented with 3.5% canola oil, 1.05 g/L ammonium sulphate, 0.28g/L yeast extract, pH 7.5 and 10% inoculum at 12.5°C over the same incubation period. The bacterium was able to tolerate an oil concentration of up to 4.0%, after which decreased bacterial growth and oil degradation were observed.ConclusionsThese features make this strain worthy of examination for practical bioremediation of lipid-rich contaminated sites. This is the first report of any waste catering oil degradation by bacteria originating from Antarctica.How to cite: Ibrahim S, Zahri KNM, Convey P, et al. Optimisation of biodegradation conditions for waste canola oil by cold-adapted Rhodococcus sp. AQ5-07 from Antarctica. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.07.005  相似文献   

19.
BackgroundThe determination of kinetic parameters and the development of mathematical models are of great interest to predict the growth of microalgae, the consumption of substrate and the design of photobioreactors focused on CO2 capture. However, most of the models in the literature have been developed for CO2 concentrations below 10%.ResultsA nonaxenic microalgal consortium was isolated from landfill leachate in order to study its kinetic behavior using a dynamic model. The model considered the CO2 mass transfer from the gas phase to the liquid phase and the effect of light intensity, assimilated nitrogen concentration, ammonium concentration and nitrate concentration. The proposed mathematical model was adjusted with 13 kinetic parameters and validated with a good fit obtained between experimental and simulated data.ConclusionsGood results were obtained, demonstrating the robustness of the proposed model. The assumption in the model of DIC inhibition in the ammonium and nitrate uptakes was correct, so this aspect should be considered when evaluating the kinetics with microalgae with high inlet CO2 concentrations.How to cite: Saldarriaga L F, Almenglo F, Ramírez M, et al. Kinetic characterization and modeling of a microalgae consortium isolated from landfill leachate under a high CO2 concentration in a bubble column photobioreactor. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.006.  相似文献   

20.
BackgroundThe intestinal bacterial community has an important role in maintaining human health. Dysbiosis is a key inducer of many chronic diseases including obesity and diabetes. Kunming mice are frequently used as a model of human disease and yet little is known about the bacterial microbiome resident to the gastrointestinal tract.ResultsWe undertook metagenomic sequencing of the luminal contents of the stomach, duodenum, jejunum, ileum, cecum, colon, and rectum of Kunming mice. Firmicutes was the dominant bacterial phylum of each intestinal tract and Lactobacillus the dominant genus. However, the bacterial composition differed among the seven intestinal tracts of Kunming mice. Compared with the small intestine, the large intestine bacterial community of Kunming mice is more stable and diverse.ConclusionsTo our knowledge, ours is the first study to systematically describe the gastrointestinal bacterial composition of Kunming mice. Our findings provide a better understanding of the bacterial composition of Kunming mice and serves as a foundation for the study of precision medicine.How to cite: Han X, Shao H, Wang Y, et al. Composition of the bacterial community in the gastrointestinal tract of Kunming mice. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.11.003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号