首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that the conductance of nanochannels as a function of electrolyte concentration deviates from a linearly proportional relationship and approaches a value independent of the concentration as the electrolyte concentration is lowered. Most of the proposed models account for this behavior by considering a constant surface charge density and an ideal electrolyte solution. However, at low electrolyte concentrations, the ideal electrolyte approximation is no longer valid because the ions that result from the atmospheric carbon dioxide dissolution in water dominate the ionic concentration. In this paper, arrays of silica nanochannels were electrically characterized via conductance measurements. The conductance at low salt concentrations is modeled by a variable surface charge model that accounts for all ionic species in solution. This model was used to determine the variable surface charge of the bare silica nanochannels as well as of chemically modified nanochannels. The model correctly predicted the variation of the nanochannel conductance observed after silane (aminopropyldimethylethoxysilane) functionalization and single-strand DNA immobilization. Finally, pH modification of bulk KCl solutions was employed as an alternative method of changing the surface charge of silica nanochannels. Surface charge calculated from conductance measurements performed at different bulk pH values confirmed that the surface charge of the silica nanochannel walls is sensitive to the H+ concentration.  相似文献   

2.
Using Monte Carlo simulations of a touching-bead model of double-stranded DNA, we show that DNA extension is enhanced in isosceles triangular nanochannels (relative to a circular nanochannel of the same effective size) due to entropic depletion in the channel corners. The extent of the enhanced extension depends non-monotonically on both the accessible area of the nanochannel and the apex angle of the triangle. We also develop a metric to quantify the extent of entropic depletion, thereby collapsing the extension data for circular, square, and various triangular nanochannels onto a single master curve for channel sizes in the transition between the Odijk and de Gennes regimes.  相似文献   

3.
Investigation of single molecule DNA dynamics in confined environments has led to important applications in DNA analysis, separation, and sequencing. Here, we studied the electrophoretic transport of DNA molecules through nanochannels shorter than the DNA contour length and calculated the associated translocation time curves. We found that the longer T4 DNA molecules required a longer time to traverse a fixed length nanochannel than shorter λ DNA molecules and that the translocation time decreased with increasing electric field which agreed with theoretical predictions. We applied this knowledge to design an asymmetric electric pulse and demonstrate the different responses of λ and T4 DNA to the pulses. We used Brownian dynamics simulations to corroborate our experimental results on DNA translocation behaviour. This work contributes to the fundamental understanding of polymer transport through nanochannels and may help in designing better separation techniques in the future.  相似文献   

4.
Nanochannels offer a way to align and analyze long biopolymer molecules such as DNA with high precision at potentially single basepair resolution, especially if a means to detect biomolecules in nanochannels electronically can be developed. Integration of nanochannels with electronics will require the development of nanochannel fabrication procedures that will not damage sensitive electronics previously constructed on the device. We present here a near-room-temperature fabrication technology involving parylene-C conformal deposition that is compatible with complementary metal oxide semiconductor electronic devices and present an analysis of the initial impedance measurements of conformally parylene-C coated nanochannels with integrated gold nanoelectrodes.No two cells are exactly alike, either in terms of their genome, the genomic epigenetic modification of the genome, or the expressed proteome.1 The genomic heterogeneity of cells is particularly important from an evolutionary perspective since it represents the stages of evolution of a population of cells under stress.2 Because of the important variances in the genome that occur from cell to cell, it is critical to develop genomic analysis technologies which can do single-cell and single molecule genomic analysis as an electronic “direct read” without intervening amplification steps.3, 4, 5, 6, 7, 8 In this paper, we present a technique which uses conformal coverage of nanochannels containing nanoelectrodes using a room-temperature deposition of parylene-C, a pin-hole-free, excellent electrical insulator with low autofluorescence.9 This procedure should open the door to integration of many kinds of surface electronics with nanochannels. One of the most difficult aspects in introducing electronics into nanochannel technology is the sealing of nanochannel so that the electrodes are not compromised by harsh chemicals or high temperatures. There are various methods to form nanochannels containing nanoelectrodes, including wafer bonding techniques,10 removal of sacrificial materials,11 and nonuniform sputtering deposition.12 Methods employing a sacrificial layer removal show the greater compatibility to electronic integration, but current methods to remove sacrificial materials require either high temperatures11 or harsh chemicals.13, 14The basic device consisted of 12 mm long, 100 nm wide, 100 nm high nanochannels interrogated by 22 pairs of 30 nm wide gold nanoelectrodes. The outline of the fabrication process is shown in Fig. Fig.1.1. The fabrication process was carried out on a standard 4 in. single-side polished p-type ⟨100⟩ silicon wafer with 100 nm of dry thermal oxide on the top as an insulating layer, which also helped the wetting of the nanochannels. The first step involved nanofabrication of the 25 nm thick nanoelectrodes on the SiO2 top of the wafer using electron beam lithography (EBL). External gold connection pads were constructed using standard metal lift-off techniques and photolithography to connect to the nanoelectrodes. A Raith E-Line e-beam writing system (Raith USA, Ronkonkoma, NY) was used to expose polymethyl methacrylate (PMMA) for metal lift-off. Figure Figure1a1a shows a scanning electron microscopy (SEM) image of the nanoelectrodes. The 100 nm sealed nanochannels were constructed using sacrificial removal techniques. We used EBL to expose a 100 nm thick film of PMMA over the gold nanolines in the region around the nanolines, leaving behind lines of unexposed sacrificial layer of PMMA. We next evaporated 25 nm of SiO2 over the nanolines to improve the surface wetting properties of nanochannel and then conformally coated with 4 μm thick of parylene-C [poly(chloro-p-xylylene)] using a Specialty Coating Systems model PDS 2010 parylene coating system (SCS Systems, Indianapolis, IN). Access holes for the gold electrodes and the feeding channels were etched through by oxygen plasma and 1:10 buffered oxide etchant. To avoid autofluorescence induced in parylene by an active plasma15 and ambient UV radiation,16 it is important not to expose the remaining parylene with plasma and to keep the samples in the dark. The sacrificial removal of PMMA in the nanochannels was done in four steps: (1) soaking the chip in 55 °C 1165 MicroChem resist remover (MicroChem, Newton, MA) for 36 h, (2) room-temperature soaking in 1,2-dichloroethane for 12 h, (3) soaking in room-temperature acetone for 12 h, and (4) drying the nanochannels by critical point drying (CPD-030, BAL-TEC AG, Principality of Liechtenstein), which served to prevent the collapse of the nanochannel resulting from surface tension of the acetone.Open in a separate windowFigure 1(a) SEM image of gold nanoelectrodes; scale bar is 200 nm. (b) 100×100 nm2 PMMA nanoline is written over the gold nanoelectrodes by exposure of the surrounding PMMA. (c) Parylene-C conformal coating over the PMMA nanoline. PMMA is dissolved and parylene-C etched by reactive ion etching.Conductance measurements were done using ac techniques. The ac impedance Ztot of an insulating ionic fluid such as water between electrodes is a complex subject.17 The most general model for the complex impedance of an electrode in ionic solution is typically modeled as the Randle circuit, which is shown in Fig. Fig.22.17 There are two major contributions to the imaginary part of the impedance: the capacitance of the double layer (Cdl), which is purely imaginary and has no dc conductance, and the impedance due to charge transfer resulting in electrochemical reactions at the electrode∕electrolyte interface, which can be modeled as a contact resistor (RCT), which is given by the Butler–Volmer equation, which describes the I-V characteristic curve when electrochemical reactions occur at the electrode,18 in series with a complex Warburg impedance (ZW) which represents injected charge transport near the electrode;19 more details can be found in Ref. 20. Since we applied a 10 mV rms ac voltage with no dc offset in our measurements, electrochemical reactions are negligible, which means no electrochemical charge transfer occurred and as a result RCT goes to infinity. We have drawn a gray box around the elements connected to the Warburg impedance branch of the circuit to show that they are negligible in our analysis.Open in a separate windowFigure 2The equivalent circuit of the nanoelectrodes in contact with water lying atop an insulating SiO2 film which covers a silicon substrate. The elements in the gray boxes can be ignored in our measurements since there is no hydrolysis at low voltage, while the elements within the dotted box are coupling reactances to the underlying p-doped silicon wafer.In the case of no direct charge injection, the electrodes are coupled by the purely capacitive dielectric layer impedance Cdl to the solvent and are also coupled capacitively by the dielectric SiO2 film capacitance Cox to the underlying p-doped silicon semiconductor. We model the semiconductor as a purely resistive material with bulk resistivity ρSi. The value of Cdl∕area is on the order of ϵϵoκ, where ϵ is the dielectric constant of water (about 80) and κ is the Debye screening parameter of the counterions in solution: κ=ϵϵokBTe2Σicizi2,20 where ci is the bulk ion concentration of charge zi. At our salt molarity of 50 mM (1∕2 Tris∕Borate∕EDTA (TBE) buffer), Cdl is approximately 30 μF∕cm2 using 1∕κ∼1 nm.In Fig. Fig.3,3, we show the ac impedance measurements between pairs nanoelectrodes for both dry and TBE buffer wet nanochannels. The electrodes are capacitively coupled to the underlying silicon substrate through an oxide capacitor Cox. We model the doped silicon wafer as pure resistors, so there is an R1 that connects both Cox, and each Cox is connected to the ground with an R2. Curve fitting was done by using the 3SPICE circuit emulation code (VAMP Inc., Los Angeles, CA). We therefore obtained the following parameters for the dry curve: Cox=1.32 nF, R1=17.5 μΩ, and R2=32.8 kΩ. R1 is not sensitive in the fit as long as it is smaller than the impedance of Cox. Given ρSi of the wafer of 1–10 Ω cm, R2 should be on the order of 103 Ω, which is slightly smaller than our fitting results. The same parameters for the wafer coupling parameters were then used for fitting the impedance measurements for wet channels. For TBE buffer solution in the nanochannel, curve fitting yields Cdl=50 pF and Rsol=105 Ω. However, given the dimension of our nanochannels, we should get a transverse resistance R∼109 Ω. One possible explanation for this difference is that the evaporated SiO2 film which was put over the PMMA is porous and allows buffer to penetrate the oxide film,21 but given that the film is only 25 nm thick this would at most increase the cross section by one order of magnitude. However, it is known that there is a high fractional presence of mobile counterions associated with the charged channel walls.22 To calculate exact conductance contribution from the surface charges is a tricky business, but since the surface-to-volume ratios in our nanochannels are much greater than the slits, a larger conductance enhancement can be expected, and more work needs to be done.Open in a separate windowFigure 3ac impedance spectra of TBE buffer solution in a transchannel measurement between adjacent pairs of nanoelectrodes separated by 135 μm. The red circles are data for a dry channel and the solid red line is the fit to the model shown in the upper right hand corner. The green squares and dashed green line are for a nanochannel wet with TBE buffer.We have presented a way to fabricate a nanochannel integrated with electrodes. This technology opens up opportunities for electronic detection of charged polymers. With our techniques to fabricate nanoelectrodes with nanochannels, it should be possible to include integrated electronics with nanofludics, allowing the electronic observation of a single DNA molecule at high spatial resolution. However, the present design has problems. Most of the ac went through the silicon wafer instead of the solution. To enhance the sensitivity, we need either to increase the ratio of current going through the liquid to the current going through the wafer or to have a circuit design that picks up the changes in Cdl and Rsol.  相似文献   

5.
Xie Q  Zhou Q  Xie F  Sang J  Wang W  Zhang HA  Wu W  Li Z 《Biomicrofluidics》2012,6(1):16502-165028
This paper introduced a wafer-scale fabrication approach for the preparation of nanochannels with high-aspect ratio (the ratio of the channel depth to its width). Edge lithography was used to pattern nanogaps in an aluminum film, which was functioned as deep reactive ion etching mask thereafter to form the nanochannel. Nanochannels with aspect ratio up to 172 and width down to 44 nm were successfully fabricated on a 4-inch Si wafer with width nonuniformity less than 13.6%. A microfluidic chip integrated with nanometer-sized filters was successfully fabricated by utilizing the present method for geometric-controllable nanoparticle packing.  相似文献   

6.
We report on low-cost fabrication and high-energy density of full-cell lithium-ion battery (LIB) models. Super-hierarchical electrode architectures of Li2SiO3/TiO2@nano-carbon anode (LSO.TO@nano-C) and high-voltage olivine LiMnPO4@nano-carbon cathode (LMPO@nano-C) are designed for half- and full-system LIB-CR2032 coin cell models. On the basis of primary architecture-power-driven LIB geometrics, the structure keys including three-dimensional (3D) modeling superhierarchy, multiscale micro/nano architectures and anisotropic surface heterogeneity affect the buildup design of anode/cathode LIB electrodes. Such hierarchical electrode surface topologies enable continuous in-/out-flow rates and fast transport pathways of Li+-ions during charge/discharge cycles. The stacked layer configurations of pouch LIB-types lead to excellent charge/discharge rate, and energy density of 237.6 Wh kg−1. As the most promising LIB-configurations, the high specific energy density of hierarchical pouch battery systems may improve energy storage for long-driving range of electric vehicles. Indeed, the anisotropic alignments of hierarchical electrode architectures in the large-scale LIBs provide proof of excellent capacity storage and outstanding durability and cyclability. The full-system LIB-CR2032 coin cell models maintain high specific capacity of ∼89.8% within a long-term life period of 2000 cycles, and average Coulombic efficiency of 99.8% at 1C rate for future configuration of LIB manufacturing and commercialization challenges.  相似文献   

7.
We have developed a two-step electron-beam lithography process to fabricate a tandem array of three pairs of tip-like gold nanoelectronic detectors with electrode gap size as small as 9 nm, embedded in a coplanar fashion to 60 nm deep, 100 nm wide, and up to 150 μm long nanochannels coupled to a world-micro-nanofluidic interface for easy sample introduction. Experimental tests with a sealed device using DNA-protein complexes demonstrate the coplanarity of the nanoelectrodes to the nanochannel surface. Further, this device could improve transverse current detection by correlated time-of-flight measurements of translocating samples, and serve as an autocalibrated velocimeter and nanoscale tandem Coulter counters for single molecule analysis of heterogeneous samples.  相似文献   

8.
Advances in nanofabrication and materials science give a boost to the research in nanofluidic energy harvesting. Contrary to previous efforts on isothermal conditions, here a study on asymmetric temperature dependence in nanofluidic power generation is conducted. Results are somewhat counterintuitive. A negative temperature difference can significantly improve the membrane potential due to the impact of ionic thermal up-diffusion that promotes the selectivity and suppresses the ion-concentration polarization, especially at the low-concentration side, which results in dramatically enhanced electric power. A positive temperature difference lowers the membrane potential due to the impact of ionic thermal down-diffusion, although it promotes the diffusion current induced by decreased electrical resistance. Originating from the compromise of the temperature-impacted membrane potential and diffusion current, a positive temperature difference enhances the power at low transmembrane-concentration intensities and hinders the power for high transmembrane-concentration intensities. Based on the system''s temperature response, we have proposed a simple and efficient way to fabricate tunable ionic voltage sources and enhance salinity-gradient energy conversion based on small nanoscale biochannels and mimetic nanochannels. These findings reveal the importance of a long-overlooked element—temperature—in nanofluidic energy harvesting and provide insights for the optimization and fabrication of high-performance nanofluidic power devices.  相似文献   

9.
Bond graph methods are used to derive a nonlinear model of a U-tube steam generator like those used in pressurized water reactor (PWR) power plants. A major advantage of bond graph modeling is the ease with which different subsystem models can be interconnected; this feature is demonstrated in the steam generator modeling. Individual models of primary water cooling, generator tube heat capacity, secondary and downcomer fluid mass and energy flows, the feedwater supply system, and the main steam control valve are developed. The complete bond graph model is validated using data from a test reactor steam generator.  相似文献   

10.
We reported the fabrication and characterization of nanofluidic channels by Triple Thermal Oxidation and Silicon-Glass Anodic Bonding. Planar nanochannels with depths from sub-100 nm down to sub-10 nm were realized by this method. A theoretical model was developed to precisely predict the depth of nanochannels. The depth and uniformity of nanochannels showed good stability during anodic bonding. This method is promising for various nanofluidic studies, such as nanofluidic electrokinetics, biomolecule manipulation, and energy conversion.  相似文献   

11.
陈可 《大众科技》2014,(1):65-67
根据汽车和舰船实际供电情况,文章设计了一款宽输入电压范围的稳压电源,其输入电压范围为DC4.5V-60V,输出电流达5A。整个电源方案分为稳压部分、充电管理部分和升压管理部分,分别采用TPS54560、TPS61175以及TP4056芯片。实验结果表明,该电源方案具有输入电压范围宽、转换效率高、输出稳定,可应用与车载定位模块或舰船用的定位通讯终端。  相似文献   

12.
The rapid development of printed and microscale electronics imminently requires compatible micro-batteries (MBs) with high performance, applicable scalability, and exceptional safety, but faces great challenges from the ever-reported stacked geometry. Herein the first printed planar prototype of aqueous-based, high-safety Zn//MnO2 MBs, with outstanding performance, aesthetic diversity, flexibility and modularization, is demonstrated, based on interdigital patterns of Zn ink as anode and MnO2 ink as cathode, with high-conducting graphene ink as a metal-free current collector, fabricated by an industrially scalable screen-printing technique. The planar separator-free Zn//MnO2 MBs, tested in neutral aqueous electrolyte, deliver a high volumetric capacity of 19.3 mAh/cm3 (corresponding to 393 mAh/g) at 7.5 mA/cm3, and notable volumetric energy density of 17.3 mWh/cm3, outperforming lithium thin-film batteries (≤10 mWh/cm3). Furthermore, our Zn//MnO2 MBs present long-term cyclability having a high capacity retention of 83.9% after 1300 cycles at 5 C, which is superior to stacked Zn//MnO2 batteries previously reported. Also, Zn//MnO2 planar MBs exhibit exceptional flexibility without observable capacity decay under serious deformation, and remarkably serial and parallel integration of constructing bipolar cells with high voltage and capacity output. Therefore, low-cost, environmentally benign Zn//MnO2 MBs with in-plane geometry possess huge potential as high-energy, safe, scalable and flexible microscale power sources for direction integration with printed electronics.  相似文献   

13.
开关磁阻起动发电机是一种新型航空高压直流起动、发电一体化机,具有容量大、功率密度高、可靠性好、容错性高,结构简单、成本低等优点,能够方便地实现起动和发电双功能。作为新一代航空起动发电机,是未来同类系统的教学重点。LabVIEW前面板能够方便地实现控制开关、电流电压表和显示转矩转速等功能,对于演示性教学系统具有很好的辅助性教学功能。  相似文献   

14.
There is currently a growing interest in control of stretching of DNA inside nanoconfined regions due to the possibility to analyze and manipulate single biomolecules for applications such as DNA mapping and barcoding, which are based on stretching the DNA in a linear fashion. In the present work, we couple Finite Element Methods and Monte Carlo simulations in order to study the conformation of DNA molecules confined in nanofluidic channels with neutral and charged walls. We find that the electrostatic forces become more and more important when lowering the ionic strength of the solution. The influence of the nanochannel cross section geometry is also studied by evaluating the DNA elongation in square, rectangular, and triangular channels. We demonstrate that coupling electrostatically interacting walls with a triangular geometry is an efficient way to stretch DNA molecules at the scale of hundreds of nanometers. The paper reports experimental observations of λ-DNA molecules in poly(dimethylsiloxane) nanochannels filled with solutions of different ionic strength. The results are in good agreement with the theoretical predictions, confirming the crucial role of the electrostatic repulsion of the constraining walls on the molecule stretching.  相似文献   

15.
油轮在储、卸油作业及运输过程中,惰气系统的功用一是封舱惰化,降低封闭空间内的含氧量并排出可燃碳氢气体以达到防暴的目的,另外可以用来进行气体置换,用新鲜的空气置换封闭空间内的惰性气体,提高氧气含量,以达到舱内安全作业的要求。基于南海XJ23—1 FPSO项目,详细介绍了惰气发生器系统用于FPSO的组成特点及工作原理,包括风机、供油泵、甲板水封泵、海水冷却泵、惰气发生器、甲板水封罐和压力真空断路器在整个系统中的功用、动作逻辑,同时,分别就惰性体气发生器的空气模式和惰性气体模式两种工作方式在FPSO上的应用进行了详细阐述。  相似文献   

16.
We present in this paper a method for obtaining a low cost and high replication precision 2D (two dimensional) nanofluidic chip with a PET (polyethylene terephthalate) sheet, which uses hot embossing and a thermal bonding technique. The hot embossing process parameters were optimized by both experiments and the finite element method to improve the replication precision of the 2D nanochannels. With the optimized process parameters, 174.67 ± 4.51 nm wide and 179.00 ± 4.00 nm deep nanochannels were successfully replicated into the PET sheet with high replication precision of 98.4%. O2 plasma treatment was carried out before the bonding process to decrease the dimension loss and improve the bonding strength of the 2D nanofluidic chip. The bonding parameters were optimized by bonding rate of the nanofluidic chip. The experiment results show that the bonding strength of the 2D PET nanofluidic chip is 0.664 MPa, and the total dimension loss of 2D nanochannels is 4.34 ± 7.03 nm and 18.33 ± 9.52 nm, in width and depth, respectively. The fluorescence images demonstrate that there is no blocking or leakage over the entire micro- and nanochannels. With this fabrication technology, low cost polymer nanochannels can be fabricated, which allows for commercial manufacturing of nano-components.  相似文献   

17.
With the rapidly increasing penetration level of power generated by large scale photovoltaic (PV) units into the power systems, the effect of the variable output power of the PV unit on the stability of the system cannot be ignored. This paper presents a mathematical approach to study the effect of high infiltration of PV power plant on the small signal stability of a power network and design of optimal fractional order PID (PIλDμ) controller for improving the probabilistic small signal stability of the power systems, taking into consideration the uncertainty of system operating conditions. Due to the probabilistic characteristics of large scale PV power generation, deterministic analysis approaches are not able to fully reveal the impact of high-level PV penetration. At first, this work introduces the main module and mathematical modeling of the large scale PV generation jointly with the single-machine infinite-bus power system. In the following, the paper proposes an efficient method that tunes power system stabilizer (PSS) to have the robustness for damping electro-mechanical oscillations in power systems with incorporated random PV power. For this reason, a robust PSS based on hybridization of PIλDμ controller and Non-dominated Sorting Genetic Algorithm (NSGAII) is designed. This paper targets at finding the optimal gain scheduling of the PIλDμ through the use of the advanced heuristic optimization technique with two objective functions in PV-grid connected systems. The performance of the proposed NSGAII-based PIλDμ controller (NSGAII- PIλDμ) under different solar irradiation, temperature conditions and disturbances is tested. Simulation results illustrate that the model presented can be used in designing of essential controllers for large scale PV power plant.  相似文献   

18.
A relatively simple, inexpensive and reliable technique was developed to fabricate an array of nanochannels. Moreover, the nanochannels are directly integrated to microchannels as a whole, which facilitates solution loading from the millimeter-scaled loading reservoirs into the nanochannels. It is found that continuous bovine serum albumin (BSA) line structures with triangle-like cross section at nanoscale can be obtained by evaporation of BSA solution with concentration between 0.5 wt. % and 1 wt. % inside the microchannels. The poly(dimethyl siloxane) nanochannels were replicated from these line structures, followed by sealing with the glass slide. The DNA molecules can be stretched inside the nanochannels as fabricated.  相似文献   

19.
鄱阳湖区近地层风能资源特征研究   总被引:2,自引:0,他引:2  
在鄱阳湖区4座测风塔历时1年逐10分钟梯度观测的资料基础上,统计分析了该地区平均风特征和风能资源参数。.结果表明:鄱阳湖区风速随着高度升高而增加较为缓慢,风切变指数较平原地区明显偏小,在湖区北部的狭长地带,狭管效应对风速的增强作用较为明显;受地形的影响,鄱阳湖北部狭管内风廓线分布高度一致,狭管内外明显不同;鄱阳湖区地势低洼的地方湍流强度高于地势较高的地方的湍流强度,山脊处湍流强度随高度变化不明显,在狭管内,湍流强度较狭管外开阔湖面小;鄱阳湖区风场各高度层Weibull尺度因子值在4.92~7.49之间,各高度层Weibull形状参数值在1.49~1.84之间。观测塔位于山脊上的长岭的层形状参数和射山的尺度因子值随高度的变化趋势不同于另外两个测风塔。  相似文献   

20.
天津近海风能资源的高分辨率数值模拟与评估   总被引:1,自引:0,他引:1  
杨艳娟  李明财  任雨  熊明明 《资源科学》2011,33(10):1999-2004
风能是可再生能源中发展最快的清洁能源,具有广阔的应用前景。近海地区由于风速较大,以及可利用面积大等优点,近海风电是未来风电发展中一种新的趋势,但海上气象要素直接观测困难,需要通过高分辨率数值模拟对其可利用性及开发潜力进行评估。本文利用MM5/Calmet模式模拟了天津沿海地区的较高分辨率(水平分辨率1km×1km、垂直分辨率10m)的风能资源分布状况,并结合实测数据对其模拟效果进行了评估。结果表明:该模式对天津沿海地区的年平均风速及风速的逐日变化趋势均具有良好的模拟能力,3个测风塔年平均风速的相对误差分别为7.11%、12.99%、6.14%,可为天津海上风能资源评估提供科学依据;利用风速大小年景分析得到天津沿m2,海且地有区效多小年时平数均长风,风能资资源源状分况布较状好况。,发现天津近海海域年平均风速在(6.6~7.0)m/s,平均风功率密度超过340w/m~2,且有效小时数长,风资源状况较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号