首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题已知椭圆的方程为x2/4 y2/2=1,点A 的坐标(1,1). (1)A为直线l与椭圆两交点的中点,求l 的方程; (2)求过点A的直线与椭圆的两交点的中点的轨迹方程.解 (1)设l与椭圆的交点分别为 (x1,y1),(x2,y2)(x1≠x2), 代入椭圆方程得  相似文献   

2.
处理直线与椭圆相交问题,采用设出交点坐标,但不求出,利用韦达定理和相关坐标去把问题转化,可巧妙解题下面用一例说明.例已知点P(4,2)是直线l被椭圆x236+y92=1所截得的线段的中点,求直线l的方程.分析本题考查直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立消去y(或x),得到关于x(或y)的一元二次方程,再由根与系数之间的关系,直接求出x1+x2,x1x2(或y1+y2、y1y2)的值代入计算即得,并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法在圆锥曲线中要经常用到.本题涉及到直线被椭圆截得弦的中点问题,也可采用点差法或中点坐标公…  相似文献   

3.
解析几何的核心思想是“坐标法”.在直角坐标系中,平面上的点用坐标(x,y)表示,把曲线看成是适合某种条件的点的集合或轨迹,用曲线上点的坐标(x,y)所满足的二元方程f(x,y)=0表示曲线,用代数方法研究方程的性质,进而间接地研究曲线的性质.这就要求曲线和方程之间必须具有某种等价关系,即给“曲线的方程”下一个合理的定义,对合理性的要求就是能通过方程研究曲线的性质.  相似文献   

4.
课时一 椭圆的标准方程及几何性质 基础篇 诊断练习一、填空题1.椭圆 4 x2 + 2 y2 =1的焦点坐标为 ,准线方程为 ,离心率为 .2 .椭圆 x29+ y24 =1上任意一点 P到两焦点 F1,F2 的距离之和为 ,三角形 F1PF2 的周长为.3.椭圆 x22 5+ y216 =1上一点 P到右焦点 F的距离是长轴两端点到右焦点 F的距离的等差中项 ,则点 P的坐标为 .4 .椭圆 x24 + y23=1与两对称轴的交点分别为 A ,B,C,D ,则四边形 ABCD的内切圆的面积为 .二、选择题1.设焦距为 2 c =6 ,焦点在 x轴上的椭圆经过点Q( 0 ,- 4) ,则该椭圆的标准方程为 (   )( A) x210 0 + y23…  相似文献   

5.
题 求证 椭圆 x22 5 +y29=1和双曲线 x21 5 -y2 =1在交点处的切线互相垂直。学生往往先求出椭圆与双曲线的交点坐标 ,然后再分别求出椭圆、双曲线在交点处的切线方程 ,进而由两切线斜率的乘积为 -1 ,得到切线互相垂直的结论。思路自然 ,但解题过程却比较繁琐。其实本题有如下简捷的解法。证明 设两曲线交点为 (x0 ,y0 ) ,则过交点的两曲线的切线方程为 :l1:9x0 x +2 5 y0 y =2 2 5 ,l2 :x0 x -1 5 y0 y =1 5 ,∴k1=-9x02 5 y0,k2 =x01 5 y0,k1k2 =-9x202 5× 1 5 y20①∵交点 (x0 ,y0 )在两曲线上 ,所以9x20 +2 5 y20 =2 2 5 ,x20 -1 5 y…  相似文献   

6.
曲线都可以看做是适合某种条件的点的轨迹,由曲线的性质建立曲线的方程是解析几何的基本课题之一,每年高考几乎都有这方面的试题。求轨迹方程的一般步骤是:1、选取适当的坐标系,用(x,y)表示平面上动点M的坐标;2、根据动点满足的几何条件P(M),列出动点M的坐标x、y间的代数关系式F(x,y)=0;3、证明所得方  相似文献   

7.
一利用已知对称关系及其结论化繁为简例1 已知两曲线 y=kx 1和 x~2 y~2 kx-y-4=0的两个交点关于直线 y=x 对称,求两交点坐标.解:因两曲线的两交点关于直线 y=x 对称,则直线y=kx 1和直线 y=x 垂直.故 k=-1.解方程组(?)得两曲线交点为(2,-1)和(-1,2).  相似文献   

8.
<正>在解析几何中,我们常常利用曲线束解题,如过两相交直线交点的直线束,过两圆相交的交点的圆束,等等,其最大的作用是简化运算.下面谈谈二次曲线束在解几方面的应用.一、知识梳理二次曲线方程ax2+bxy+cy2+bxy+cy2+dx+ey+f=0,根据参数的不同值,可表示成椭圆、双曲线、抛物线等二次曲线.其实除了上述曲线之外,还可表示成两条直线.形如(a_1x+b_1y+c_1)(a_2x+b_2y+c_2)=0的方程也为二元二次方程,可看成退化的二次曲线.  相似文献   

9.
正"圆"是苏教版必修二中重要的一块内容,是几何与代数的交汇点,也是高考的热点之一.以下主要研究其常见的几类问题.一、求圆的标准方程例1已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切.则圆C的方程为.(2010天津文数)解析:本题主要考查圆的方程的求法,属于容易题.令y=0得x=-1,所以直线x-y+1=0,与x轴的交点为(-1,0).因为直线与圆相切,所以圆心到直线的距离等于半径,即r=-1+0+3姨2=姨2,所以圆C的方程为(x+1)2+y2=2.  相似文献   

10.
对于直线方程:x_0x/a~2+y_0y/b~2=1,文[1]中已证明:它是过平面上任一点p_0(x_0,y_0)(原点除外)的直线与椭圆的两个交点为切点的两切线的交点的轨迹方程,同时还指出了它的两个有趣的性质。本文将继续研究它的另一  相似文献   

11.
对于椭圆x2/a2+y2/b2=1,令x’=x/a,y’=y/b,则椭圆方程变为:x’2+y’2=. 1,此为单位圆方程.这样,椭圆问题就可充分利用圆的性质来解决了.举例说明. 例1若直线l:x+2y+t=0与椭圆C:x2/9+y2/4=1相交于两点,求t 的取值范围. 解:令x=3x’,y=2y’,则椭圆C和直线l分别变成圆C’:x'2+y'2= 1和直线l':3x’+4y’+t=0.  相似文献   

12.
与圆锥曲线有关的轨迹问题是解析几何中的一类重要问题,它往往和圆锥曲线的定义和性质有密切的联系,因此,在求与圆锥曲线有关的轨迹问题时,要特别重视圆锥曲线的定义和性质在求解时的作用.下面谈谈几种常见求轨迹方程的技巧与方法.  一、直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,即直接通过建立 x、y之间的关系,构成F(x,y)=0,这种方法叫直接法.例1  已知两条直线 l1∶2x-3y+2=0 和l2∶3x-2y+3=0。有一动圆(圆心和半径都动)与l1、l2 都相交,且 l1、l2 …  相似文献   

13.
<正>问题阅读:我们知道,在数轴上,x=1 表示一个点.而在平面直角坐标系中,x=1表示一条直线,我们还知道,以二元一次方程2x -y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①,观察图①可以得出:直线x=1 与直线y=2x+1的交点P的坐标(1,3)就是  相似文献   

14.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

15.
我们知道平面上二次曲线的方程可写为:22a11x+2a12xy+a22y+2a13x+2a23y+a33=0.我们常用的分类方法是将它们经过平移、旋转,化为标准方程:22b11x+b22y+b33=0(b11b22≠0)或b22y2+2b13x=0(b22b13≠0)或b22y2+b33=0(b22≠0).从而,得出,共有九类形式:椭圆、虚椭圆、点椭圆、双曲线、两条相交曲线、抛物线、两条平行直线、两条虚平行直线、两条重合直线.其中,我们称椭圆、双曲、抛物线为非退化的实二次曲线.现在,本文用另一种分类方法,研究这三种曲线的性质.首先,我们定义曲线的相等:定义1若两条曲线经过平移、旋转、反射后重合,则称这两条曲线相…  相似文献   

16.
在直线和圆的教学过程中遇到这样一个问题 :已知圆 C1 :x2 + y2 -2 x + 10 y -2 4=0 ,圆 C2 :x2 + y2 + 2 x + 2 y -8=0 ,求经过两圆交点 A、B的直线 l的方程 .学生在处理这个问题时 ,通常做法有以下两种 :第一种 ,解题模式是 :联立方程组 ,求出交点坐标 ,再根据直线方程的两点式写出所求的直线方程 .具体解法如下 :根据题意 ,联立方程组x2 + y2 -2 x + 10 y -2 4=0  (1)x2 + y2 + 2 x + 2 y -8=0   (2 )(1) -(2 )得 :-4 x + 8y -16=0 ,即x -2 y + 4=0 ,变形得 :x =2 y -4 (3 )将 (3 )代入 (2 )化简整理得 :y2 -2 y =0 ,解得 :y1 =0 ,y…  相似文献   

17.
新教材明确指出 :将圆按照某个方向均匀压缩 (拉长 )可以得到椭圆因此椭圆与圆之间 ,可以通过伸缩变换转化 .三角函数图象变换中的周期变换和振幅变换实际上就是图象沿x轴和y轴方向上的伸缩变换 .由于我们对圆的性质相对于椭圆来说要熟悉得多 ,因此解决椭圆问题时 ,有时可化为圆来解决 ,只要利用伸缩变换即可 .例 1 求椭圆 x2a2 +y2b2 =1的斜率为k的一组平行弦中点的轨迹方程 .解 作变换 x′ =bax ,y′=y ,则椭圆化成圆x′2 +y′2 =b2 ,平行弦方程y=kx +m化成y′=abkx′ +m .易得在圆内平行弦中点的轨迹是垂直于弦且过圆心的直线y′=-bakx…  相似文献   

18.
综观历年高考解析几何试题,有六大热点.一、曲线轨迹方程的问题探求曲线的轨迹方程,即求曲线上动点坐标所满足的代数条件是解析几何的最基本问题,它在历年高考中频繁出现.全国高考85、86、91、93、94、95年均以这类问题为压轴题.此类问题通常是通过建立坐标系,设动点坐标,依据题设条件,列出等式,代入化简整理即得曲线的轨迹方程.基本方法有:直译法、定义法、代入法、交轨法、几何法、参数法、极坐标法等.例1 已知椭圆 x~2/24 y~2/16=1,直线l:x/12 y/8=1.P是 l 上一点,射线 OP 交椭圆于点 R,又点 Q 在 OP 上且满足|OQ|·|OP|=|OR|~2,当点 P 在 l 上移动时,求点 Q 的轨迹方程,并说明轨迹是什么曲线.(1995年  相似文献   

19.
性质1椭圆x2/a2+y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是椭圆上的点,直线OM与ON的斜率之积为-b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2+y2/(1+λ)b21的椭圆;双曲线x2/a2-y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是双曲线上的点,直线OM与ON的斜率之积为b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2-y2/(1+λ)b2=1的双曲线;圆x2+y2=r2,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是圆上的点,直线OM与ON的斜率之积为-1,则动点P的轨迹是方程为x2 +y2=(1+λ2)r2的圆.  相似文献   

20.
笔者近日在学习和研究圆锥曲线时,发现圆锥曲线与其切线有关的一个优美的性质,现表述如下,以期与同仁分享. 性质1 已知A,B是椭圆C:x2/a2+y2/b2=1(a>b>0)上不同的两点(不同时在坐标轴上,或kOA·kOB≠-b2/a2),O为椭圆C的中心,椭圆C在点A,B处的切线分别与直线OB,OA相交于P,Q两点.则AB∥PQ. 证明:如图1,设A(x1,y1),B(x2,y2).则切线AP,BQ的方程分别为:x1x/a2+y1y/b2=1,x2x/a2+y2y/b2=1.直线OA,OB的方程分别为:y=y1/x1x,y=y2/x2x由方程组{x2x/a2+y2y/b2=1 y=y1/x1x,解得点Q的坐标为xQ=a2+b2+x1/b2x1x2+a2y1y2,yQ=a2+b2+y1/b2x1x2+a2y1y2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号