首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The aim of this study was to identify those kinematic characteristics that are most closely related to an athlete's medical classification and measured distance of a put. Two S-VHS camcorders (60 fields per second) were used to record the performance of 17 males of different classes. Each participant performed six trials and the best trial for each was selected for analysis. Three-dimensional kinematics of the shot and upper body segments at the instant of release and during the forward thrust (delivery) were determined. The average speeds and angles of the shot at release for different classes (5.3-7.8 m x s(-1) and 21.2 to 34.4 degrees, respectively) were smaller than those exhibited by elite male able-bodied throwers. The height of the shot at release, the angular speed of the upper arm at release, the range of motion of the shoulder girdle during the delivery, and the average angular speeds of the trunk, shoulder girdle and upper arm during the delivery, were all significantly correlated with both the classification and measured distance (P < 0.05). The results indicate the importance of achieving a high average angular speed for each upper body segment during the delivery.  相似文献   

2.
The laws of bowling in cricket state 'a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand'. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not 'throwing' but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two-link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

3.
Cricket     
The laws of bowling in cricket state ‘a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand’. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not ‘throwing’ but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two‐link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

4.
The purpose of this study was to discover the contributions of individual upper body segmental rotations to ball release speed for cricket bowling and determine whether attempting to forcefully flex the lower trunk leads to an increase in ball release speed and bowling accuracy. Three dimensional kinematic data of eight male fast bowlers were recorded by a Vicon motion capture system under three cricket bowling conditions: (1) participants bowled at their stock delivery speeds (sub-max condition), (2) participants bowled at their absolute maximal speeds (max condition), and (3) participants bowled at their absolute maximal speeds but forced to flex the lower trunk (max-trunk condition). The accuracy of each delivery was also measured. The results showed that the average ball release speeds for the max-trunk condition were faster than the other two conditions. A general pattern of proximal to distal sequencing was observed for all three conditions. There was a slight decrement in accuracy seen in the max-trunk condition with respect to the other two conditions. For all three conditions, the upper arm rotation made the largest contribution, followed in turn by torso and thorax rotation, pelvis rotation, linear velocity of pelvis, and forearm and hand rotation.  相似文献   

5.
Recurve archery is an Olympic sport that requires extreme precision, upper body strength and endurance. The purpose of this research was to quantify how postural stability variables both pre- and post-arrow release, draw force, flight time, arrow length and clicker reaction time, collectively, impacted on the performance or scoring outcomes in elite recurve archery athletes. Thirty-nine elite-level recurve archers (23 male and 16 female; mean age?=?24.7?±?7.3 years) from four different countries volunteered to participate in this study prior to competing at a World Cup event. An AMTI force platform (1000Hz) was used to obtain centre of pressure (COP) measurements 1s prior to arrow release and 0.5s post-arrow release. High-speed footage (200Hz) allowed for calculation of arrow flight time and score. Results identified clicker reaction time, draw force and maximum sway speed as the variables that best predicted shot performance. Specifically, reduced clicker reaction time, greater bow draw force and reduced postural sway speed post-arrow release were predictors of higher scoring shots. It is suggested that future research should focus on investigating shoulder muscle tremors at full draw in relation to clicker reaction time, and the effect of upper body strength interventions (specifically targeting the musculature around the shoulder girdle) on performance in recurve archers.  相似文献   

6.
Kinematic comparisons of 1996 Olympic baseball pitchers   总被引:1,自引:0,他引:1  
The aim of this study was to compare and evaluate the kinematics of baseball pitchers who participated in the 1996 XXVI Centennial Olympic Games. Two synchronized video cameras operating at 120 Hz were used to video 48 pitchers from Australia, Japan, the Netherlands, Cuba, Italy, Korea, Nicaragua and the USA. All pitchers were analysed while throwing the fastball pitch. Twenty-one kinematic parameters were measured at lead foot contact, during the arm cocking and arm acceleration phases, and at the instant of ball release. These parameters included stride length, foot angle and foot placement; shoulder abduction, shoulder horizontal adduction and shoulder external rotation; knee and elbow flexion; upper torso, shoulder internal rotation and elbow extension angular velocities; forward and lateral trunk tilt; and ball speed. A one-way analysis of variance (P < 0.01) was used to assess kinematic differences. Shoulder horizontal adduction and shoulder external rotation at lead foot contact and ball speed at the instant of ball release were significantly different among countries. The greater shoulder horizontal abduction observed in Cuban pitchers at lead foot contact is thought to be an important factor in the generation of force throughout the arm cocking and arm acceleration phases, and may in part explain why Cuban pitchers generated the greatest ball release speed. We conclude that pitching kinematics are similar among baseball pitchers from different countries.  相似文献   

7.
The aim of this study was to compare and evaluate the kinematics of baseball pitchers who participated in the 1996 XXVI Centennial Olympic Games. Two synchronized video cameras operating at 120 Hz were used to video 48 pitchers from Australia, Japan, the Netherlands, Cuba, Italy, Korea, Nicaragua and the USA. All pitchers were analysed while throwing the fastball pitch. Twenty-one kinematic parameters were measured at lead foot contact, during the arm cocking and arm acceleration phases, and at the instant of ball release. These parameters included stride length, foot angle and foot placement; shoulder abduction, shoulder horizontal adduction and shoulder external rotation; knee and elbow flexion; upper torso, shoulder internal rotation and elbow extension angular velocities; forward and lateral trunk tilt; and ball speed. A one-way analysis of variance (P ? 0.01) was used to assess kinematic differences. Shoulder horizontal adduction and shoulder external rotation at lead foot contact and ball speed at the instant of ball release were significantly different among countries. The greater shoulder horizontal abduction observed in Cuban pitchers at lead foot contact is thought to be an important factor in the generation of force throughout the arm cocking and arm acceleration phases, and may in part explain why Cuban pitchers generated the greatest ball release speed. We conclude that pitching kinematics are similar among baseball pitchers from different countries.  相似文献   

8.
Most assessments of segmental sequencing in throwing, striking or kicking have indicated a proximal-to-distal sequencing of end-point linear speeds, joint angular velocities, segment angular velocities and resultant joint moments. However, the role of long-axis rotations has not been adequately quantified and located in the proximal-to-distal sequence. The timing and importance of upper arm internal-external rotation and pronation-supination in the development of racquet head speed have been examined in the tennis serve and squash forehand drive and considered in relation to conventional concepts of proximal-to-distal sequencing. Both long-axis rotations reached their peak angular speeds late in both strokes, typically after shoulder flexion-extension, shoulder abduction-adduction and elbow extension. These results clarify and confirm the importance of upper limb long-axis rotations in the production of racquet head speed. It appears that traditional proximal-to-distal sequencing concepts are inadequate to describe accurately the complexity of the tennis serve or squash forehand drive. It is essential to consider upper arm and forearm longitudinal axis rotations in explaining the mechanics of these movements and in developing coaching emphases, strength training schedules and injury prevention programmes.  相似文献   

9.
The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for "good" and "short" length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion--extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for "short" and "good" length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

10.
Abstract

The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for “good” and “short” length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion – extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for “short” and “good” length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

11.
This study investigates how elbow hyperextension affects ball release speed in fast bowling. A two-segment planar computer simulation model comprising an upper arm and forearm + hand was customised to an elite fast bowler. A constant torque was applied at the shoulder and elbow hyperextension was represented using a damped linear torsional spring at the elbow. The magnitude of the constant shoulder torque and the torsional spring parameters were determined by concurrently matching three performances. Close agreement was found between the simulations and the performances with an average difference of 3.8%. The simulation model with these parameter values was then evaluated using one additional performance. Optimising ball speed by varying the torsional spring parameters found that elbow hyperextension increased ball release speed. Perturbing the elbow torsional spring stiffness indicated that the increase in ball release speed was governed by the magnitude of peak elbow hyperextension and the amount that the elbow recoils back towards a straight arm after reaching peak elbow hyperextension. This finding provides a clear understanding that a bowler who hyperextends at the elbow and recoils optimally will have an increase in ball speed compared to a similar bowler who cannot hyperextend. A fast bowler with 20° of elbow hyperextension and an optimal level of recoil will have increased ball speeds of around 5% over a bowler without hyperextension.  相似文献   

12.
Most assessments of segmental sequencing in throwing, striking or kicking have indicated a proximal-to-distal sequencing of end-point linear speeds, joint angular velocities, segment angular velocities and resultant joint moments. However, the role of long-axis rotations has not been adequately quantified and located in the proximal-to-distal sequence. The timing and importance of pronation-supination in the development of racquet head speed have been examined in the tennis serve and squash forehand drive and considered in relation to conventional concepts of proximal-to-distal sequencing. Both long-axis rotations reached their peak angular speeds late in both strokes, typically after shoulder flexion-extension, shoulder abduction-adduction and elbow extension. These results clarify and confirm the importance of upper limb long-axis rotations in the production of racquet head speed. It appears that traditional proximal-to-distal sequencing concepts are inadequate to describe accurately the complexity of the tennis serve or squash forehand drive. It is essential to consider upper arm and forearm longitudinal axis rotations in explaining the mechanics of these movements and in developing coaching emphases, strength training schedules and injury prevention programmes.  相似文献   

13.
Abstract

The purpose of this study was to establish criterion-referenced standards for selected tests of arm and shoulder girdle strength and endurance for college females. Several popular tests of arm and shoulder girdle strength and endurance were administered to equal numbers of trained and untrained college females (N = 92) to generate data for the analysis. The contrasting groups method (Berk, 1976; Safrit & Wood, 1990) yielded the following criterion cutoff scores that classified college females as trained or untrained on the basis of regular upper arm and shoulder girdle resistance training: pull-ups = .5 repetitions (reps), 90° push-ups = 16 reps, flexed arm hang = 5s, seated chest press = 24.5 kg, seated biceps curl = 16.4 kg, seated lat pull (latissmus dorsi pull-down) = 38.2 kg, absolute strength index = 86.4 kg, and relative strength index = .6 kg per kg of body weight. Cross-validation of the standards on an independent sample of college females (N = 112) suggested stability of the cutoff scores for pull-ups, flexed arm hang, and relative strength.  相似文献   

14.
15.
Some studies have reported that overarm baseball pitching shows a proximal to distal sequential joint motion including a rapid extension of the elbow. It has been suggested that the rapid elbow extension just before ball release is not due to the action of the elbow extensor muscles, but the underlying mechanisms are not so clear. The purpose of this study was to determine the contributions of each joint muscular- and motion-dependent torques, including the upper trunk and throwing arm joints to generate the rapid elbow extension during baseball pitching. The right handed throwing motions of three baseball pitchers were recorded using five high-speed video cameras and the positional data were calculated using the direct linear transformation method. A throwing arm dynamic model of the upper trunk and throwing arm joints was then used, including 10 degrees of freedom, to calculate the throwing arm joint muscular-, throwing arm and upper trunk joint motion-, gravity-, and external force-dependent components that contribute to the maximum elbow extension angular velocity. The results showed that the rapid elbow extension was primarily due to the upper trunk counterclockwise rotation and shoulder horizontal adduction angular velocity-dependent torques. This study implied that the trunk counterclockwise rotators and shoulder horizontal adductors generate positive torques to maintain the angular velocities of the upper trunk counterclockwise rotation and shoulder horizontal adduction may play a key role in producing the rapid elbow extension.  相似文献   

16.
The purpose of this study was to determine the significance of mechanical energy generation and transfer in the upper limb in generating the racket speed during table tennis topspin forehands. Nine advanced and eight intermediate table tennis players performed the forehand stroke at maximum effort against light and heavy backspin balls. Five high-speed video cameras operating at 200 fps were used to record the motions of the upper body of the players. The joint forces and torques of the racket arm were determined with inverse dynamics, and the amount of mechanical energy generated and transferred in the arm was determined. The shoulder internal rotation torque exerted by advanced players was significantly larger than that exerted by the intermediate players. Owing to a larger shoulder internal rotation torque, the advanced players transferred mechanical energy from the trunk of the body to the upper arm at a higher rate than the intermediate players could. Regression of the racket speed at ball impact on the energy transfer to the upper arm suggests that increase in the energy transfer may be an important factor for enabling intermediate players to generate a higher racket speed at impact in topspin forehands.  相似文献   

17.
Abstract

We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

18.
In Paralympic seated throwing events, the athlete can throw with and without an assistive pole. This study aimed to identify and compare performance-related kinematic variables associated with both seated throwing techniques. Twenty-nine non-disabled males (21.9 ± 2.6 years) performed 12 maximal throws using a 1-kg ball in two conditions (no-pole and pole). Automatic 3D-kinematic tracking (150 Hz) and temporal data were acquired. There was no significant difference between ball speeds at the point of release between conditions (no-pole = 12.8 ± 1.6 m/s vs. pole = 12.9 ± 1.5 m/s). There were four kinematic variables that were strongly correlated with ball speed when throwing with or without an assistive pole. These variables were elbow flexion at the start phase (pole r = .39 and no-pole r = .41), maximum shoulder external rotation angular velocity during the arm cocking phase (pole r = .42), maximum shoulder internal rotation angular velocity during the arm acceleration phase (pole r = .47), and should internal rotation angular velocity at the instant of ball release (pole r = .40). The pole clearly influenced the throwing technique with all four strongly correlated variables identified in this condition, compared to only one during the no-pole condition. When using the pole, participants produced significantly higher shoulder internal rotation angular velocities during the arm acceleration phase (pole = 367 ± 183°/s vs. no-pole = 275 ± 178°/s, p < .05) and at the instant of ball release (pole = 355 ± 115°/s vs. no-pole = 264 ± 120°/s, p < .05), compared to throwing without the pole. These findings have implications for the development of evidence-based classification systems in Paralympic seated throwing, and facilitate research that investigates the impact of impairment on seated throwing performance.  相似文献   

19.
定距离原地投篮的弧线轨迹主要取决于出手速度和出手角度。为了探究优秀青年男子运动员不同距离原地投篮命中率的各影响因素,采用平面定机高速摄影和运动技术解析法,采集12名U16中国国家男子篮球运动员罚篮、中投和三分投球中篮过程投篮手臂的腕、肘、肩、膝等相关关节的线速度和角速度等参数,运用关联度和回归分析(Matlab2018a)探究规律。发现8项因素对原地投篮对命中率有不同程度的影响,其中,球初始高度、球离手高度、腕关节速度和膝关节速度4项因素,通过投篮角度和投篮速度对不同距离投篮中命中率的影响最大。  相似文献   

20.
Previous planar models of the downswing in golf have suggested that upper limb segments (left shoulder girdle and left arm) move in a consistent fixed plane and that the clubhead also moves only in this plane. This study sought to examine these assumptions. Three-dimensional kinematic analysis of seven right-handed golfers of various abilities (handicap 0- 15) was used to define a plane (named the left-arm plane) containing the 7th cervical vertebra, left shoulder and left wrist. We found that the angles of this plane to the reference horizontal z axis and target line axis (parallel to the reference x axis) were not consistent. The angle to the horizontal z axis varied from a mean of 133 degrees (s = 1 degrees) at the start of the downswing to 102 degrees (s = 4 degrees) at impact, suggesting a "steepening" of the left-arm plane. The angle of the plane to the target line changed from - 9 degrees (s = 16 degrees) to 5 degrees (s = 15 degrees) during the same period, showing anticlockwise (from above) rotation, although there was large inter-individual variation. The distance of the clubhead from the left-arm plane was 0.019 m (s = 0.280 m) at the start at the downswing and 0.291 m (s = 0.077 m) at impact, showing that the clubhead did not lie in the same plane as the body segments. We conclude that the left arm and shoulder girdle do not move in a consistent plane throughout the downswing, and that the clubhead does not move in this plane. Previous models of the downswing in golf may therefore be incorrect, and more complex (but realistic) simulations should be performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号