首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15–50°C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6–104.8) mmol · L–1 and 35.9 ± 10.4 (18.2–70.8) mmol · L–1, respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26–5.73) L · h–1 and 15.3 ± 6.8 (3.3–69.7) ml · kg–1 · h–1, respectively. This retrospective analysis provides normative data for athletes’ forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions.  相似文献   

2.
There is limited research studying fluid and electrolyte balance in rugby union players, and a paucity of information regarding the test–retest reliability. This study describes the fluid balance of elite rugby union players across multiple squads and the reliability of fluid balance measures between two equivalent training sessions. Sixty-one elite rugby players completed a single fluid balance testing session during a game simulation training session. A subsample of 21 players completed a second fluid balance testing session during an equivalent training session. Players were weighed in minimal clothing before and after each training session. Each player was provided with their own drinks which were weighed before and after each training session. More players gained body weight (9 (14.8%)) during training than lost greater than 2% of their initial body mass (1 (1.6%)). Pre-training body mass and rate of fluid loss were significantly associated (r?=?0.318, p?=?.013). There was a significant correlation between rate of fluid loss in sessions 1 (1.74?±?0.32?L?h?1) and 2 (1.10?±?0.31?L.?h?1), (r?=?0.470, p?=?.032). This could be useful for nutritionists working with rugby squads to identify players with high sweat losses.  相似文献   

3.
AbstThis study examined the relationship between intensity of training and changes in hydration status, core temperature, sweat rate and composition and fluid balance in professional football players training in the heat. Thirteen professional football players completed three training sessions; "higher-intensity" (140 min; HI140), "lower-intensity" (120 min; LI120) and "game-simulation" (100 min; GS100). Movement demands were measured by Global Positioning System, sweat rate and concentration were determined from dermal patches and body mass change. Despite similar environmental conditions (26.9 ± 0.1 °C and 65.0 ± 7.0% relative humidity [Rh]), higher relative speeds (m · min(-1)) and increased perceptions of effort and thermal strain were observed in HI140 and GS100 compared with LI120 (P < 0.05). Significantly (P < 0.05) greater sweat rate (L · h(-1)) and electrolyte losses (g) were observed in HI140 and GS100 compared with LI120. Rate of rise in core temperature was correlated with mean speed (r = 0.85), session rating of perceived exertion (sRPE) (r = 0.61), loss of potassium (K+) (r = 0.51) sweat rate (r = 0.49), and total sweat loss (r = 0.53), with mean speed the strongest predictor. Sodium (Na+) (r = 0.39) and K+ (r = 0.50) losses were associated with total distance covered. In hot conditions, individualised rehydration practices should be adopted following football training to account for differences in sweat rate and electrolyte losses in response to intensity and overall activity within a session.  相似文献   

4.
ABSTRACT

The purpose of this study was to expand our previously published sweat normative data/analysis (n = 506) to establish sport-specific normative data for whole-body sweating rate (WBSR), sweat [Na+], and rate of sweat Na+ loss (RSSL). Data from 1303 athletes were compiled from observational testing (2000–2017) using a standardized absorbent sweat patch technique to determine local sweat [Na+] and normalized to whole-body sweat [Na+]. WBSR was determined from change in exercise body mass, corrected for food/fluid intake and urine/stool loss. RSSL was the product of sweat [Na+] and WBSR. There were significant differences between sports for WBSR, with highest losses in American football (1.51 ± 0.70 L/h), then endurance (1.28 ± 0.57 L/h), followed by basketball (0.95 ± 0.42 L/h), soccer (0.94 ± 0.38 L/h) and baseball (0.83 ± 0.34 L/h). For RSSL, American football (55.9 ± 36.8 mmol/h) and endurance (51.7 ± 27.8 mmol/h) were greater than soccer (34.6 ± 19.2 mmol/h), basketball (34.5 ± 21.2 mmol/h), and baseball (27.2 ± 14.7 mmol/h). After ANCOVA, significant between-sport differences in adjusted means for WBSR and RSSL remained. In summary, due to the significant sport-specific variation in WBSR and RSSL, American football and endurance have the greatest need for deliberate hydration strategies.

Abbreviations: WBSR: whole body sweating rate; SR: sweating rate; Na+: sodium; RSSL: rate of sweat sodium loss  相似文献   

5.
Abstract

In this study we investigated pre-training hydration status, fluid intake, and sweat loss in 20 elite male Brazilian adolescent soccer players (mean ± s: age 17.2 ± 0.5 years; height 1.76 ± 0.05 m; body mass 69.9 ± 6.0 kg) on three consecutive days of typical training during the qualifying phase of the national soccer league. Urine specific gravity (USG) and body mass changes were evaluated before and after training sessions to estimate hydration status. Players began the days of training mildly hypohydrated (USG > 1.020) and fluid intake did not match fluid losses. It was warmer on Day 1 (33.1 ± 2.4°C and43.4 ± 3.2% relative humidity; P < 0.05) and total estimated sweat losses (2822 ± 530 mL) and fluid intake (1607 ± 460 mL) were significantly higher (P < 0.001) compared with Days 2 and 3. Data also indicate a significant correlation between the extent of sweat loss and the volume of fluid consumed (Day 1: r = 0.560, P = 0.010; Day 2: r = 0.445, P = 0.049; Day 3: r = 0.743, P = 0.0001). We conclude that young, native tropical soccer players arrive hypohydrated to training and that they exhibit voluntary dehydration; therefore, enhancing athletes' self-knowledge of sweat loss during training might help them to consume sufficient fluid to match the sweat losses.  相似文献   

6.
Abstract

In this study, we examined the correlations between selected markers of isometric training intensity and subsequent reductions in resting blood pressure. Thirteen participants performed a discontinuous incremental isometric exercise test to volitional exhaustion at which point mean torque for the final 2-min stage (2min-torquepeak) and peak heart rate peak (HRpeak) were identified. Also, during 4 weeks of training (3 sessions per week, comprising 4 × 2 min bilateral leg isometric exercise at 95% HRpeak), heart rate (HRtrain), torque (Torquetrain), and changes in EMG amplitude (ΔEMGamp) and frequency (ΔEMGfreq) were determined. The markers of training intensity were: Torquetrain relative to the 2min-torquepeak (%2min-torquepeak), EMG relative to EMGpeak (%EMGpeak), HRtrain ΔEMGamp, ΔEMGfreq, and %MVC. Mean systolic (?4.9 mmHg) and arterial blood pressure (?2.7mmHg) reductions correlated with %2min-torquepeak (r = ?0.65, P = 0.02 and r = ?0.59, P = 0.03), ΔEMGamp (r = 0.66, P = 0.01 and r = 0.59, P = 0.03), ΔEMGfreq (r = ?0.67, P = 0.01 and r = ?0.64, P = 0.02), and %EMGpeak (systolic blood pressure only; r = ?0.63, P = 0.02). These markers best reflect the association between isometric training intensity and reduction in resting blood pressure observed after bilateral leg isometric exercise training.  相似文献   

7.
ABSTRACT

We analysed the time course of recovery of creatine kinase (CK) and countermovement jump (CMJ) parameters after a football match, and correlations between changes in these variables and match time–motion parameters (GPS-accelerometry) in 15 U-19 elite male players. Plasma CK and CMJ height (CMJH), average concentric force (CMJCON) and average eccentric force (CMJECC) were assessed 2 h before and 30 min, 24 h and 48 h post-match. There were substantially higher CK levels 30 min, 24 h and 48 h (ES: 0.43, 0.62, 0.40, respectively), post-match. CMJECC (ES: ?0.38), CMJH (ES: ?0.35) decreased 30 min post, CMJCON (ES: ?0.35), CMJECC (ES: ?0.35) and CMJH (ES: ?1.35) decreased 24 h post, and CMJCON (ES: ?0.41) and CMJH (ES: ?0.53) decreased 48 h post. We found correlations between distance covered at velocities ≤21 km · h?1 and changes in CK at 24 h (r = 0.56) and at 48 h (r = 0.54) and correlations between CK and distance covered >14 km · h?1 (r = 0.50), accelerations (r = 0.48), and decelerations (r = 0.58) at 48 h. Changes in CMJCON 30 min and 24 h post (both r = ?0.68) correlated with impacts >7.1·G. Decelerations >2 m · s?2 correlated with changes CMJCON (r = ?0.49) at 48 h and CMJECC (r = ?0.47) at 30 min. Our results suggest that match GPS-accelerometry parameters may predict muscle damage and changes in components of neuromuscular performance immediately and 24–48 h post-match.  相似文献   

8.
Abstract

Aspects of team players' performance are negatively affected when ~ 2% body mass is lost by perspiration. Although such dehydration is likely reached during summer practice in outdoors sports, it is unclear if such dehydration is achieved during the practice of indoor sports. We assessed the fluid and electrolyte deficits of elite team players during practice for the following indoor sports: indoor soccer (n=9), basketball (n=11), volleyball (n=10), and handball (n=13). Morning hydration status was estimated by measuring urine specific gravity. Sweat rate was calculated from body mass changes and fluid intake. Sweat sodium concentration from the forearm was used to estimate whole-body sodium losses. Over 91% of the players were moderately hypohydrated (urine specific gravity>1.020) at waking 3 h before practice. Indoor soccer players sweated at a higher rate (1.8 litres · h?1) than volleyball and handball players (1.2 and 1.1 litres · h?1, respectively; P<0.05), whereas sweat rate was not different between basketball players (1.5 litres · h?1) and the other team sport players (P>0.05). In average, 62±13% of sweat losses were replaced and teams' body mass loss did not exceed 1.2±0.3%. Sodium losses were similar among teams, averaging 1.2±0.2 g. The exercise fluid replacement habits of professional indoor team players are adequate to prevent 2% dehydration. However, most players could benefit from increasing fluid intake between workouts to offset the high prevalence of morning hypohydration.  相似文献   

9.
Abstract

We investigated the associations of anthropometry, training, and pre-race experience with race time in 93 recreational male ultra-marathoners (mean age 44.6 years, s = 10.0; body mass 74.0 kg, s = 9.0; height 1.77 m, s = 0.06; body mass index 23.4 kg · m?2, s = 2.0) in a 100-km ultra-marathon using bivariate and multivariate analysis. In the bivariate analysis, body mass index (r = 0.24), the sum of eight skinfolds (r = 0.55), percent body fat (r = 0.57), weekly running hours (r = ?0.29), weekly running kilometres (r = ?0.49), running speed during training (r = ?0.50), and personal best time in a marathon (r = 0.72) were associated with race time. Results of the multiple regression analysis revealed an independent and negative association of weekly running kilometres and average speed in training with race time, as well as a significant positive association between the sum of eight skinfold thicknesses and race time. There was a significant positive association between 100-km race time and personal best time in a marathon. We conclude that both training and anthropometry were independently associated with race performance. These characteristics remained relevant even when controlling for personal best time in a marathon.  相似文献   

10.
The purpose of this study was to investigate the relationship between running economy (RE) and performance in a homogenous group of competitive Kenyan distance runners. Maximal aerobic capacity (VO2max) (68.8 ± 3.8 ml?kg?1?min?1) was determined on a motorised treadmill in 32 Kenyan (25.3 ± 5.0 years; IAAF performance score: 993 ± 77 p) distance runners. Leg anthropometry was assessed and moment arm of the Achilles tendon determined. While Achilles moment arm was associated with better RE (r2 = 0.30, P = 0.003) and upper leg length, total leg length and total leg length to body height ratio were correlated with running performance (r = 0.42, P = 0.025; r = 0.40, P = 0.030 and r = 0.38, P = 0.043, respectively), RE and maximal time on treadmill (tmax) were not associated with running performance (r = ?0.01, P = 0.965; r = 0.27; P = 0.189, respectively) in competitive Kenyan distance runners. The dissociation between RE and running performance in this homogenous group of runners would suggest that RE can be compensated by other factors to maintain high performance levels and is in line with the idea that RE is only one of many factors explaining elite running performance.  相似文献   

11.
Decision-making is a central component of the in-game performance of Australian football umpires; however, current umpire training focuses largely on physiological development with decision-making skills development conducted via explicit lecture-style meetings with limited practice devoted to making actual decisions. Therefore, this study investigated the efficacy of a video-based training programme, aimed to provide a greater amount of contextualised visual experiences without explicit instruction, to improve decision-making skills of umpires. Australian football umpires (n = 52) were recruited from metropolitan and regional Division 1 competitions. Participants were randomly assigned to an intervention or control group and classified according to previous umpire game experience (i.e., experienced; less experienced). The intervention group completed a 12-week video-based decision-making training programme, with decision-making performance assessed at pre-training, and 1-week retention and 3-week retention periods. The control group did not complete any video-based training. Results indicated a significant Group (intervention; Control) × Test interaction (F(1, 100) = 3.98; = 0.02, partial ?2 = 0.074), with follow-up pairwise comparisons indicating significant within-group differences over time for the intervention group. In addition, decision-making performance of the less experienced umpires in the intervention group significantly improved (F(2, 40) = 5.03, P = 0.01, partial ?2 = 0.201). Thus, video-based training programmes may be a viable adjunct to current training programmes to hasten decision-making development, especially for less experienced umpires.  相似文献   

12.
ABSTRACT

The aim of this study was to investigate training load and cardiorespiratory fitness in a top-level Spanish (LaLiga) football team (n = 17). The submaximal Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1SUB) was performed in four moments of the competitive period from early February (E1) to early May (E4). Training load was quantified using a 10-Hz global positioning system and heart rate (HR) recording (n = 837 individual training sessions), while match load was quantified using semi-automated cameras (n = 216 individual match observations). Cardiorespiratory fitness moderately improved as the season progressed (P < 0.05; effect sizes = 0.8 to 1.2). Cumulative total distance covered during training between E1 and E4 was negatively correlated with percentage of changes in mean HR during the last 30 s of Yo-Yo IR1SUB (P = 0.049; r = ?0.47 [?0.71; ?0.14]; moderate). HR during the last 30 s of Yo-Yo IR1SUB was negatively correlated to total distance covered during the match (P = 0.024; r = ?0.56 [?0.80; ?0.17]; moderate). Yo-Yo IRSUB can be used to monitor seasonal changes in cardiorespiratory fitness without the need to have players work until exhaustion. Cardiorespiratory fitness given by mean HR during the last 30 s of the test seems meaningful in relation to match performance.  相似文献   

13.
Purpose: Correlations between fatigue-induced changes in exercise performance and maximal rate of heart rate (HR) increase (rHRI) may be affected by exercise intensity during assessment. This study evaluated the sensitivity of rHRI for tracking performance when assessed at varying exercise intensities. Method: Performance (time to complete a 5-km treadmill time-trial [5TTT]) and rHRI were assessed in 15 male runners following 1 week of light training, 2 weeks of heavy training (HT), and a 10-day taper (T). Maximal rate of HR increase (measured in bpm·s?1) was the first derivative maximum of a sigmoidal curve fit to HR data recorded during 5 min of running at 8 km·h?1 (rHRI8km·h?1), and during subsequent transition to 13 km·h?1 (rHRI8–13km·h?1) for a further 5 min. Results: Time to complete a 5-km treadmill time-trial was likely slower following HT (effect size ± 90% confidence interval = 0.16 ± 0.06), and almost certainly faster following T (–0.34 ± 0.08). Maximal rate of HR increase during 5 min of running at 8 km·h?1 and rHRI8–13km·h?1 were unchanged following HT and likely increased following T (0.77 ± 0.45 and 0.66 ± 0.62, respectively). A moderate within-individual correlation was found between 5TTT and rHRI8km·h?1 (r value ± 90% confidence interval = –.35 ± .32). However, in a subgroup of athletes (= 7) who were almost certainly slower to complete the 5TTT (4.22 ± 0.88), larger correlations were found between the 5TTT and rHRI8km·h?1 (r = –.84 ± .22) and rHRI8–13km·h?1 (r = –.52 ± .41). Steady-state HR during rHRI assessment in this group was very likely greater than in the faster subgroup (≥ 1.34 ± 0.86). Conclusion(s): The 5TTT performance was tracked by both rHRI8km·h?1 and rHRI8–13km·h?1. Correlations between rHRI and performance were stronger in a subgroup of athletes who exhibited a slower 5TTT. Individualized workloads during rHRI assessment may be required to account for varying levels of physical conditioning.  相似文献   

14.
Abstract

In 219 recreational male runners, we investigated changes in body mass, total body water, haematocrit, plasma sodium concentration ([Na+]), and urine specific gravity as well as fluid intake during a 100-km ultra-marathon. The athletes lost 1.9 kg (s = 1.4) of body mass, equal to 2.5% (s = 1.8) of body mass (P < 0.001), 0.7 kg (s = 1.0) of predicted skeletal muscle mass (P < 0.001), 0.2 kg (s = 1.3) of predicted fat mass (P < 0.05), and 0.9 L (s = 1.6) of predicted total body water (P < 0.001). Haematocrit decreased (P < 0.001), urine specific gravity (P < 0.001), plasma volume (P < 0.05), and plasma [Na+] (P < 0.05) all increased. Change in body mass was related to running speed (r = ?0.16, P < 0.05), change in plasma volume was associated with change in plasma [Na+] (r = ?0.28, P < 0.0001), and change in body mass was related to both change in plasma [Na+] (r = ?0.36) and change in plasma volume (r = 0.31) (P < 0.0001). The athletes consumed 0.65 L (s = 0.27) fluid per hour. Fluid intake was related to both running speed (r = 0.42, P < 0.0001) and change in body mass (r = 0.23, P = 0.0006), but not post-race plasma [Na+] or change in plasma [Na+] (P > 0.05). In conclusion, faster runners lost more body mass, runners lost more body mass when they drank less fluid, and faster runners drank more fluid than slower runners.  相似文献   

15.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

16.
Abstract

Ten healthy, non-cycling trained males (age: 21.2 ± 2.2 years, body mass: 75.9 ± 13.4 kg, height: 178 ± 6 cm, [Vdot]O2PEAK: 46 ± 10 ml · kg?1 · min?1) performed a graded incremental exercise test, two familiarisation trials and six experimental trials. Experimental trials consisted of cycling to volitional exhaustion at 100%, 110% and 120% WPEAK, 60 min after ingesting either 0.3 g · kg?1 body mass sodium bicarbonate (NaHCO3) or 0.1 g · kg?1 body mass sodium chloride (placebo). NaHCO3 ingestion increased cycling capacity by 17% at 100% WPEAK (327 vs. 383 s; P = 0.02) although not at 110% WPEAK (249 vs. 254 s; P = 0.66) or 120% WPEAK (170 vs. 175 s; P = 0.60; placebo and NaHCO3 respectively). Heart rate (P = 0.02), blood lactate (P = 0.001), pH (P < 0.001), [HCO3 ?], (P < 0.001), and base excess (P < 0.001) were greater in all NaHCO3 trials. NaHCO3 attenuated localised ratings of perceived exertion (RPEL) to a greater extent than placebo only at 100% WPEAK (P < 0.02). Ratings of abdominal discomfort and gut fullness were mild but higher for NaHCO3. NaHCO3 ingestion significantly improves continuous constant load cycling at 100% WPEAK due to, in part, attenuation of RPEL.  相似文献   

17.
ABSTRACT

The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min?1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders’ mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min?1 with lower peak power produced at 80 revs · min?1 (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η2 = 0.960), 120 revs · min?1 (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η2 = 0.970) and 140 revs · min?1 (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η2 = 0.989). The shortest time to power production was attained at 120 revs · min?1 in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min?1 (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η2 = 0.800) 100 revs · min?1 (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η2 = 0.974) and 140 revs · min?1 (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η2 = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.  相似文献   

18.
Background: To determine athletes perceived and measured indices of fluid balance during training and the influence of hydration strategy use on these parameters. Methods: Thirty-three professional rugby union players completed a 120 minute training session in hot conditions (35°C, 40% relative humidity). Pre-training hydration status, sweat loss, fluid intake and changes in body mass (BM) were obtained. The use of hydration assessment techniques and players perceptions of fluid intake and sweat loss were obtained via a questionnaire. Results: The majority of players (78%) used urine colour to determine pre-training hydration status but the use of hydration assessment techniques did not influence pre-training hydration status (1.025?±?0.005 vs. 1.023?±?0.013?g.ml?1, P?=?.811). Players underestimated sweat loss (73?±?17%) to a greater extent than fluid intake (37?±?28%) which resulted in players perceiving they were in positive fluid balance (0.5?±?0.8% BM) rather than the measured negative fluid balance (?1.0?±?0.7% BM). Forty-eight percent of players used hydration monitoring strategies during exercise but no player used changes in BM to help guide fluid replacement. Conclusion: Players have difficulty perceiving fluid intake and sweat loss during training. However, the use of hydration monitoring techniques did not affect fluid balance before or during training.  相似文献   

19.
Abstract

The present study was designed to examine physiological responses during motocross riding. Nine Finnish A-level motocross riders performed a 15-min ride at a motocross track and a test of maximal oxygen uptake ([Vdot]O2max) in the laboratory. Cardiopulmonary strain was measured continuously during the ride as well as in the [Vdot]O2max test. During the ride, mean [Vdot]O2 was 32 ml · kg?1 · min?1 (s = 4), which was 71% (s = 12) of maximum, while ventilation (V E) was 73% (s = 15) of its maximum. The relative [Vdot]O2 and V E values during the riding correlated with successful riding performance (r = 0.80, P < 0.01 and r = 0.79, P < 0.01, respectively). Mean heart rate was maintained at 95% (s = 7) of its maximum. Mean blood lactate concentration was 5.0 mmol · l?1 (s = 2.0) after the ride. A reduction of 16% (P < 0.001) in maximal isometric handgrip force was observed. In conclusion, motocross causes riders great physical stress. Both aerobic and anaerobic metabolism is required for the isometric and dynamic muscle actions experienced during a ride.  相似文献   

20.
The purpose of this study was to evaluate two practical interval training protocols on cardiorespiratory fitness, lipids and body composition in overweight/obese women. Thirty women (mean ± SD; weight: 88.1 ± 15.9 kg; BMI: 32.0 ± 6.0 kg · m2) were randomly assigned to ten 1-min high-intensity intervals (90%VO2 peak, 1 min recovery) or five 2-min high-intensity intervals (80–100% VO2 peak, 1 min recovery) or control. Peak oxygen uptake (VO2 peak), peak power output (PPO), body composition and fasting blood lipids were evaluated before and after 3 weeks of training, completed 3 days per week. Results from ANCOVA analyses demonstrated no significant training group differences for any primary variables (P > 0.05). When training groups were collapsed, 1MIN and 2MIN resulted in a significant increase in PPO (?18.9 ± 8.5 watts; P = 0.014) and time to exhaustion (?55.1 ± 16.4 s; P = 0.001); non-significant increase in VO2 peak (?2.36 ± 1.34 ml · kg?1 · min?1; P = 0.185); and a significant decrease in fat mass (FM) (??1.96 ± 0.99 kg; P = 0.011). Short-term interval exercise training may be effective for decreasing FM and improving exercise tolerance in overweight and obese women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号