首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
Metatarsal and midfoot injuries are common in American football. Footwear design may influence injury rates by altering plantar foot loading patterns in these regions. The purpose of this study was to determine the effect of cleat design on in-shoe plantar foot loading during a football-specific, resisted pushing task. Twenty competitive football players (age 14.7 ± 1.8 years, height 1.72 ± 0.10 m, and mass 71.8 ± 26.9 kg) completed three trials of pushing a weighted sled at maximal effort in a standard shoe (CLEAT) and artificial turf-specific shoe (TURF), with flexible in-shoe force measuring insoles. Repeated measures ANOVAs identified mean differences in maximum force and relative load under all regions of the foot. Results showed higher forces in the CLEAT under the medial (p < 0.001) and lateral (p = 0.004) midfoot, central (p = 0.007) and lateral (p < 0.001) forefoot, and lesser toes (p = 0.01), but lower forces in the hallux (p = 0.02) compared to the TURF shoe. Additionally, relative loading was higher in the CLEAT under the medial (p < 0.001) and lateral (p = 0.002) midfoot and lateral (p < 0.001) forefoot, but lower in the medial forefoot (p = 0.006) and hallux (p < 0.001) compared to the TURF shoe. The two shoes elicited distinct plantar loading profiles and may influence shoe selection decisions during injury prevention or rehabilitation practices.  相似文献   

2.
Plantar loading may influence comfort, performance and injury risk in soccer boots. This study investigated the effect of cleat configuration and insole cushioning levels on perception of comfort and in-shoe plantar pressures at the heel and fifth metatarsal head region. Nine soccer academy players (age 15.7 ± 1.6 years; height 1.80 ± 0.40 m; body mass 71.9 ± 6.1 kg) took part in the study. Two boot models (8 and 6 cleats) and two insoles (Poron and Poron/gel) provided four footwear combinations assessed using pressure insoles during running and 180° turning. Mechanical and comfort perception tests differentiated boot and insole conditions. During biomechanical testing, the Poron insole generally provided lower peak pressures than the Poron/gel insole, particularly during the braking step of the turn. The boot model did not independently influence peak pressures at the fifth metatarsal, and had minimal influence on heel loads. Specific boot-insole combinations performed differently (P < 0.05). The 8-cleat boot and the Poron insole performed best biomechanically and perceptually, but the combined condition did not. Inclusion of kinematic data and improved control of the turning technique are recommended to strengthen future research. The mechanical, perception and biomechanical results highlight the need for a multi-faceted approach in the assessment of footwear.  相似文献   

3.
Abstract

The aim of the study was to evaluate the short and medium term use of personalised insoles, produced by combining additive manufacturing (AM) with three-dimensional (3-D) foot scanning and computer aided design (CAD) systems. For that, 38 runners (19 pairings) were recruited. The experimental conditions were: personalised and control. The personalised condition consisted of trainers fitted with personalised glove fit insoles manufactured using AM and using foot scans to match the plantar geometry of the feet. The control condition consisted of the same trainers fitted with insoles also manufactured using AM but using scans of the original insole shape. Participants were allocated to one of the experimental conditions and wore the trainers for 3 months. Over this period they attended three laboratory sessions (at months 0, 1.5 and 3) and completed an Activity Diary after each training session. The footwear was evaluated in terms of discomfort and biomechanics. Lower discomfort ratings were found in the heel area (P ≤ 0.05) and for overall fit (P ≤ 0.05), with the personalised insole. However, discomfort was reported under the arch region for both conditions. With regard to the biomechanical data, differences between conditions were detected for ankle dorsiflexion at footstrike (P ≤ 0.05), maximum ankle eversion (P ≤ 0.05) and peak mean pressure under the heel (P ≤ 0.01): the personalised condition had lower values which may reduce injury risk. The personalisation of the geometry of insoles through advances in AM together with 3-D scanning and CAD technologies can provide benefits and has potential.  相似文献   

4.
The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23?±?5 yrs; stature 1.78?±?0.06 m; mass 72.6?±?9.2?kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (Fpeak) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (?25 to ?9.3?BW?s?1; 60% likely beneficial reduction) and plantar sensation was increased (46–58?mm) with the insole. Fpeak (?0.1 to 0.14?BW) and velocity (?0.02 to 0.06?m?s?1) were similar. Stride length, flight and contact time were lower (?0.13 to ?0.01 m; ?0.02 to?0.01?s; ?0.016 to ?0.006?s) and stride rate was higher (0.01–0.07 steps?s?1) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.  相似文献   

5.
Abstract

Weight-bearing activity has been shown to increase bone mineral density. Our purpose was to measure vertical ground reaction forces (GRFs) during cyclocross-specific activities and compute their osteogenic index (OI). Twenty-five healthy cyclocross athletes participated. GRF was measured using pressure-sensitive insoles during seated and standing cycling and four cyclocross-specific activities: barrier flat, barrier uphill, uphill run-up, downhill run-up. Peak and mean GRF values, according to bodyweight, were determined for each activity. OI was computed using peak GRF and number of loading cycles. GRF and OI were compared across activities using repeated-measures ANOVA. Number of loading cycles per activity was 6(1) for barrier flat, 8(1) barrier uphill, 7(1) uphill run-up, 12(3) downhill run-up. All activities had significantly (P < 0.01) higher peak GRF, mean GRF values and OI when compared to both seated and standing cycling. The barrier flat condition (P < 0.01) had highest peak (2.9 times bodyweight) and mean GRF values (2.3 times bodyweight). Downhill run-up (P < 0.01) had the highest OI (6.5). GRF generated during the barrier flat activity is similar in magnitude to reported GRFs during running and hopping. Because cyclocross involves weight bearing components, it may be more beneficial to bone health than seated road cycling.  相似文献   

6.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

7.
Abstract

Seven 6 s sprints with 30 s recovery between sprints were performed against two resistive loads: 50 (L50) and 100 (L100) g · kg?1 body mass. Inertia-corrected and -uncorrected peak and mean power output were calculated. Corrected peak power output in corresponding sprints and the drop in peak power output relative to sprint 1 were not different in the two conditions, despite the fact that mean power output was 15–20% higher in L100 (P < 0.01). The effect of inertia correction on power output was more pronounced for the lighter load (L50), with uncorrected peak power output in sprint 1 being 42% lower than the corresponding corrected peak power output, while this was only 16% in L100. Fatigue assessed by the drop in uncorrected peak and mean power output in sprint 7 relative to sprint 1 was less compared with that obtained by corrected power values, especially in L50 (drop in uncorrected vs. corrected peak power output: 13.3 ± 2.2% vs. 23.1 ± 4.1%, P < 0.01). However, in L100, the difference between the drop in corrected and uncorrected mean power output in sprint 7 was much smaller (24.2 ± 3.1% and 21.2 ± 2.7%, P < 0.01), indicating that fatigue may be safely assessed even without inertia correction when a heavy load is used. In conclusion, when inertia correction is performed, fatigue during repeated sprints is unaffected by resistive load. When inertia correction is omitted, both power output and the fatigue profile are underestimated by an amount dependent on resistive load. In cases where inertia correction is not possible during a repeated sprints test, a heavy load may be preferable.  相似文献   

8.
The purpose of this study was to evaluate the effects of 6 weeks of supramaximal exercise training (SET) on performance variables and metabolic changes in sedentary obese adults.

Twenty-four obese adults were randomly allocated into a non-trained (NT) [n = 12; body mass index (BMI) = 33(3)] and SET group [n = 12; BMI = (33(2)]. After baseline metabolic and fitness measurements, the participants completed a 6-week SET intervention. Metabolic, anthropometric, and fitness assessments were repeated post-intervention.

For SET, fasting glucose (4.64(0.15) vs. 4.32(0.22) mmol · l–1; P < 0.01), insulin (23.2(4.6) vs. 13.8(3.3) µmol · ml–1; P < 0.01), homoeostasis model assessment-insulin resistance index (4.78(1.2) vs. 2.65(1.5); P < 0.01) and systolic blood pressure (127(3) vs. 120(3) mmHg; P < 0.01) were significantly lower 24-h post-intervention than at baseline and for the NT group, and these changes remained significant at 72-h and 2-weeks post-intervention (P < 0.01, respectively). Interestingly, nonesterified fatty acids (0.62(0.09) vs. 0.71(0.11) mmol · l–1; P < 0.01) and resting fat oxidation rate (57(11) vs. 63(4)%; P < 0.01) increased significantly from baseline 24-h post-intervention in the SET group and from baseline at 72-h (P < 0.01, respectively) and 2-weeks post-intervention (P < 0.01, respectively). Six weeks of SET improved a number of metabolic and vascular risk factors in obese, sedentary adults, highlighting the potential of SET to provide an alternative exercise model for the improvement of metabolic health in this population.  相似文献   


9.
Abstract

In this study, we investigated changes in creatine kinase, perceptual and neuromuscular fatigue of professional rugby league players after match-play. Twenty-three male rugby league players (10 backs, 13 forwards) had their creatine kinase, perceptual ratings of fatigue, attitude to training, muscle soreness, and flight time in a countermovement jump measured before and 1 and 2 days after (day 1 and day 2 respectively) league matches. Total playing time, offensive and defensive contacts were also recorded for each player. Creatine kinase was higher both 1 and 2 days after than before matches (P < 0.05) in forwards and backs. Similarly, perceived fatigue and muscle soreness were higher than pre-match on both days 1 and 2 (P < 0.05), but did not differ between groups (P > 0.05). Jump performance was lower on day 1 but not day 2 for both groups (P < 0.05). While total playing time was longer in backs (P < 0.05), relative frequencies for all contacts were greater in forwards (P < 0.05). Contacts for forwards were correlated with all markers of fatigue (P < 0.05), but only flight time was correlated with offensive contacts in backs (P < 0.05). Despite the mechanisms of fatigue being different between forwards and backs, our results highlight the multidimensional nature of fatigue after a rugby league match and that these markers do not differ between positions.  相似文献   

10.
Technique changes in cyclists are not well described during exhaustive exercise. Therefore the aim of the present study was to analyze pedaling technique during an incremental cycling test to exhaustion. Eleven cyclists performed an incremental cycling test to exhaustion. Pedal force and joint kinematics were acquired during the last three stages of the test (75%, 90% and 100% of the maximal power output). Inverse dynamics was conducted to calculate the net joint moments at the hip, knee and ankle joints. Knee joint had an increased contribution to the total net joint moments with the increase of workload (5–8% increase, p < 0.01). Total average absolute joint moment and knee joint moment increased during the test (25% and 39%, for p < 0.01, respectively). Increases in plantar flexor moment (32%, p < 0.01), knee (54%, p < 0.01) and hip flexor moments (42%, p = 0.02) were found. Higher dorsiflexion (2%, for p = 0.03) and increased range of motion (19%, for p = 0.02) were observed for the ankle joint. The hip joint had an increased flexion angle (2%, for p < 0.01) and a reduced range of motion (3%, for p = 0.04) with the increase of workload. Differences in joint kinetics and kinematics indicate that pedaling technique was affected by the combined fatigue and workload effects.  相似文献   

11.
We evaluated the efficacy of an in-field gait retraining programme using mobile biofeedback to reduce cumulative and peak tibiofemoral loads during running. Thirty runners were randomised to either a retraining group or control group. Retrainers were asked to increase their step rate by 7.5% over preferred in response to real-time feedback provided by a wrist mounted running computer for 8 routine in-field runs. An inverse dynamics driven musculoskeletal model estimated total and medial tibiofemoral joint compartment contact forces. Peak and impulse per step total tibiofemoral contact forces were immediately reduced by 7.6% and 10.6%, respectively (P < 0.001). Similarly, medial tibiofemoral compartment peak and impulse per step tibiofemoral contact forces were reduced by 8.2% and 10.6%, respectively (P < 0.001). Interestingly, no changes were found in knee adduction moment measures. Post gait retraining, reductions in medial tibiofemoral compartment peak and impulse per step tibiofemoral contact force were still present (P < 0.01). At the 1-month post-retraining follow-up, these reductions remained (P < 0.05). With these per stance reductions in tibiofemoral contact forces in mind, cumulative tibiofemoral contact forces did not change due to the estimated increase in number of steps to run 1 km.  相似文献   

12.
Abstract

We examined differences in anthropometry and training between 64 Triple Iron ultra-triathletes competing over 11.4 km swimming, 540 km cycling, and 126.6 km running, and 71 Ironman triathletes competing over 3.8 km swimming, 180 km cycling, and 42.2 km running. The association of anthropometry and training with race time was investigated using multiple linear regression analysis. The Triple Iron ultra-triathletes were smaller (P < 0.05), had shorter limbs (P < 0.05), a higher body mass index (P < 0.05), and larger limb circumferences (P < 0.01) than the Ironman triathletes. The Triple Iron ultra-triathletes trained for more hours (P < 0.01) and covered more kilometres (P < 0.01), but speed in running during training was slower compared with the Ironman triathletes (P < 0.01). For Triple Iron ultra-triathletes, percent body fat (P = 0.022), training volume per week (P < 0.0001), and weekly kilometres in both cycling (P < 0.0001) and running (P < 0.0001) were related to race time. For Ironman triathletes, percent body fat (P < 0.0001), circumference of upper arm (P = 0.006), and speed in cycling training (P = 0.012) were associated with total race time. We conclude that both Triple Iron ultra-triathletes and Ironman triathletes appeared to profit from low body fat. Triple Iron ultra-triathletes relied more on training volume in cycling and running, whereas speed in cycling training was related to race time in Ironman triathletes.  相似文献   

13.
This study aimed to analyse the effects of two factors (number of players and training regimes) on players’ physiological and technical demands in basketball ball-drills. Twenty-one young basketball players performed four different ball-drills (two levels for each factor). The number of players involved was 2vs2 and 4vs4, while ball-drill regimes were continuous and intermittent. Physiological demand was assessed using the percentage of maximal heart rate (%HRmax), Edwards’ training load and rating of perceived exertion (RPE). Furthermore, the following technical actions were collected: dribbles, steals, rebounds, turnovers, passes (total, correct, wrong and % of correct pass) and shots (total, scored, missed and % of made shot). A 2 × 2 (number of players × regime) two-way ANOVA with repeated measures was applied for physiological parameters and technical actions. The 2vs2 condition showed higher %HRmax (P < 0.001), Edwards’ training load (P < 0.001), RPE (P < 0.001), number of dribbles (P < 0.001), rebounds (P < 0.001), passes [total (P = 0.005) and correct (P = 0.005)] and shots [total (P < 0.001) scored (P < 0.001) and missed (P < 0.001)] than 4vs4. Moreover, the continuous regime revealed higher %HRmax (P < 0.001), Edwards’ training load (P < 0.001), RPE (P = 0.006) and dribbles (P < 0.001) than the intermittent regime. This study showed that both number of players and regime are useful variables able to modify basketball ball-drills workload.  相似文献   

14.
ABSTRACT

This study investigated the effects of a congested match schedule (7 matches played in 7 days) on steroid hormone concentrations, mucosal immunity, session rating of perceived exertion (S-RPE) and technical performance in 16 elite youth soccer players (14.8 ± 0.4 years; 170.6 ± 9.4 cm; 64.9 ± 7 kg). No change was observed for salivary cortisol concentration across match time points (P = 0.33; effect size [ES] = 0.13–0.48). In contrast, there was a decrease in salivary testosterone and salivary IgA (SIgA) concentrations from the 1st compared with the last time point (P = 0.01 and 0.001, ES = 0.42 and 0.67, respectively). The SIgA concentration varied across time points (P < 0.001) with the highest value observed at the 3rd time point (rest day) (3rd vs all time point; ES = 0.47–0.73). No changes were observed for S-RPE across time points (P > 0.05). A higher number of tackles and interceptions were observed during the 4th match vs 1st and 7th matches (P < 0.001; ES = 2.25 and 1.90, respectively). The present data demonstrate that accumulated fatigue related to participation in a congested match schedule might induce a decrease in testosterone concentration in youth players and negatively affect their mucosal immunity and capacity to perform certain technical actions.  相似文献   

15.
Abstract

The metatarsal phalangeal joint (MPJ) and its crossing toe flexor muscles (TFM) represent the link between the large energy generating leg extensor muscles and the ground. The purpose of this study was to examine the functional adaptability of TFM to increased mechanical stimuli and the effects on walking, running and jumping performance.

Fifteen men performed a heavy resistance TFM strength training with 90% of the maximal voluntary isometric contraction (MVIC) for 7 weeks (560 contractions) for the left and right foot. Maximal MPJ and ankle plantar flexion moments during MVICs were measured in dynamometers before and after the intervention. Motion analyses (inverse dynamics) were performed during barefoot walking, running, and vertical and horizontal jumping. Athletic performance was determined by measuring jump height and distance.

Left (0.21 to 0.38 Nm · kg?1; P < 0.001) and right (0.24 to 0.40 Nm · kg?1; P < 0.001) MPJ plantar flexion moments in the dynamometer, external MPJ dorsiflexion moments (0.69 to 0.75 Nm · kg?1; P = 0.012) and jump distance (2.25 to 2.31 m; P = 0.006) in horizontal jumping increased significantly.

TFM responded highly to increased loading within a few weeks. The increased force potential made a contribution to an athlete's performance enhancement.  相似文献   

16.
The primary study objective was to identify determinants of short-term recovery from a 161-km ultramarathon. Participants completed 400 m runs at maximum speed before the race and on days 3 and 5 post-race, provided a post-race blood sample for plasma creatine kinase (CK) concentration, and provided lower body muscle pain and soreness ratings (soreness, 10-point scale) and overall muscular fatigue scores (fatigue, 100-point scale) pre-race and for 7 days post-race. Among 72 race finishers, soreness and fatigue had statistically returned to pre-race levels by 5 days post-race; and 400 m times at days 3 and 5 remained 26% (P = 0.001) and 12% (P = 0.01) slower compared with pre-race, respectively. CK best modelled soreness, fatigue and per cent change in post-race 400 m time. Runners with the highest CKs had 1.5 points higher (P < 0.001) soreness and 11.2 points higher (P = 0.006) fatigue than runners with the lowest CKs. For the model of 400 m time, a significant interaction of time with CK (P < 0.001) indicates that higher CKs were linked with a slower rate of return to pre-race 400 m time. Since post-race CK was the main modifiable determinant of recovery following the ultramarathon, appropriate training appears to be the optimal approach to enhance ultramarathon recovery.  相似文献   

17.
Abstract

Rowers competing at the 2000 Olympic Games were measured for 38 anthropometric dimensions. The aim was to identify common physical characteristics that could provide a competitive advantage. The participants included 140 male open-class rowers, 69 female open-class rowers, 50 male lightweight rowers, and 14 female lightweight rowers. Body mass, stature, and sitting height were different (P < 0.01) between the open-class and lightweight rowers, as well as a comparison group of healthy young adults (“non-rowers”, 42 males, 71 females), for both sexes. After scaling for stature, the open-class rowers remained proportionally heavier than the non-rowers, with greater proportional chest, waist, and thigh dimensions (P < 0.01). Rowers across all categories possessed a proportionally smaller hip girth than the non-rowers (P < 0.01), which suggested the equipment places some constraints on this dimension. Top-ranked male open-class rowers were significantly taller and heavier and had a greater sitting height (P < 0.01) than their lower-ranked counterparts. They were also more muscular in the upper body, as indicated by a larger relaxed arm girth and forearm girth (P < 0.01). For the male lightweight rowers, only proportional thigh length was greater in the best competitors (P < 0.01). In the female open-class rowers, skinfold thicknesses were lower in the more highly placed competitors (P < 0.01). In conclusion, the rowers in this sample demonstrated distinctive physical characteristics that distinguish them from non-rowers and other sports performers.  相似文献   

18.
ABSTRACT

This study aimed to explore the plantar loading variables between habitual rearfoot strike (RFS) and non-rearfoot strike (NRFS) during running. 78 healthy males participated in this study (41 RFS, 37 NRFS). In-shoe pressure sensors were used to measure plantar loading while the participants were running on a 15 m indoor runway with their preferred foot strike pattern (FSP) at 12.0 ± 5% km/h. Results indicate that force and pressure parameters were much higher in the rearfoot and midfoot regions during RFS running and relatively greater in forefoot region during NRFS running. However, compared with NRFS running, the contact area, maximum force and force-time-integrals during RFS running on total foot were 21.44% (P < 0.001, ES = 2.29), 13.99% (P = 0.006, ES = 0.64) and 21.27% (P < 0.001, ES = 0.85) higher, respectively. Total foot peak pressure and pressure-time-integral between two FSPs were similar. Higher loads in the rearfoot region may transmit to the knee joint and result in patellofemoral joint injuries. NRFS runners’ higher loads in forefoot seem to be ralated to metatarsal stress fractures and compensatory damage to the Achilles tendon. Therefore, runners should choose proper FSPs according to their unique physical conditions.  相似文献   

19.
This study aimed to examine player perceptions and biomechanical responses to tennis surfaces and to evaluate the influence of prior clay court experience. Two groups with different clay experiences (experience group, n = 5 and low-experience group, n = 5) performed a 180° turning movement. Three-dimensional ankle and knee movements (50 Hz), plantar pressure of the turning step (100 Hz) and perception data (visual analogue scale questionnaire) were collected for two tennis courts (acrylic and clay). Greater initial knee flexion (acrylic 20. 8 ± 11.2° and clay 32.5 ± 9.4°) and a more upright position were reported on the clay compared to the acrylic court (< 0.05). This suggests adaptations to increase player stability on clay. Greater hallux pressures and lower midfoot pressures were observed on the clay court, allowing for sliding whilst providing grip at the forefoot. Players with prior clay court experience exhibited later peak knee flexion compared to those with low experience. All participants perceived the differences in surface properties between courts and thus responded appropriately to these differences. The level of previous clay court experience did not influence players’ perceptions of the surfaces; however, those with greater clay court experience may reduce injury risk as a result of reduced loading through later peak knee flexion.  相似文献   

20.
Abstract

The aims of the present study were (1) to analyse the physical demands of top-class referees and (2) to compare their official FIFA fitness test results with physical performance during a match. The work rate profiles of 11 international referees were assessed during 12 competitive matches at the 2003 FIFA Under-17 World Cup and then analysed using a bi-dimensional photogrammetric video analysis system based on direct lineal transformation (DLT) algorithms. In the first 15 min of matches, the referees were more active, performing more high-intensity exercise (P < 0.01) than in the first 15 min of the second half. During the second half of matches, the referees covered a shorter distance (P < 0.01), spent more time standing still (P < 0.05), and covered less ground cruising (P < 0.05), sprinting (P < 0.05), and moving backwards (P < 0.001) than in the first half. Also in the second 45 min, the distance of referees from infringements increased (P < 0.05) in the left attacking zone of the filed. There was also a decrease (P < 0.05) in performance in the period following the most high-intensity activity, compared with the mean for the 90 min. Time spent performing high-intensity activities during a match was not related to performance in the 12-min run (r 2 = 0.30; P < 0.05), the 200-m sprint (r 2 = 0.05; P < 0.05), or the 50-m sprint (r 2 = 0.001; P < 0.05). The results of this study show that: (1) top-class referees experienced fatigue at different stages of the match, and (2) the typical field tests used by FIFA (two 50-m and 200-m sprints, followed by a 12-min run) are not correlated with match activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号