首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of training with overweight and underweight cricket balls on fast-bowling speed and accuracy were investigated in senior club cricket bowlers randomly assigned to either a traditional (n = 9) or modified-implement training (n = 7) group. Both groups performed bowling training three times a week for 10 weeks. The traditional training group bowled only regulation cricket balls (156 g), whereas the modified-implement training group bowled a combination of overweight (161?-?181 g), underweight (151?-?131 g) and regulation cricket balls. A radar gun measured the speed of 18 consecutive deliveries for each bowler before, during and after the training period. Video recordings of the deliveries were also analysed to determine bowling accuracy in terms of first-bounce distance from the stumps. Bowling speed, which was initially 108?±?5 km?·?h?1 (mean?±?standard deviation), increased in the modified-implement training group by 4.0 km?·?h?1 and in the traditional training group by 1.3 km?·?h?1 (difference, 2.7 km?·?h?1; 90% confidence limits, 1.2 to 4.2 km?·?h?1). For a minimum worthwhile change of 5 km?·?h?1, the chances that the true effect on bowling speed was practically beneficial/trivial/harmful were 1.0/99/<?0.1%. For bowling accuracy, the chances were 1/48/51%. This modified-implement training programme is not a useful training strategy for club cricketers.  相似文献   

2.
Abstract

A simulated cricket batting innings was developed to replicate the physical demands of scoring a century during One-Day International cricket. The simulated innings requires running-between-the-wickets across six 5-over stages, each of 21 min duration. To validate whether the simulated batting innings is reflective of One-Day International batting, movement patterns were collected using a global positioning system (GPS) and compared with previous research. In addition, indicators of physical strain were recorded (heart rate, jump heights, sweat loss, tympanic temperature). Nine club cricketers (mean ± s: age 20 ± 3 years; body mass 79.5 ± 7.9 kg) performed the simulated innings outdoors. There was a moderate trend for distance covered in the simulated innings to be less than that during One-Day batting (2171 ± 157 vs. 2476 ± 631 m · h?1; effect size = 0.78). This difference was largely explained by a strong trend for less distance covered walking in the simulated innings than in One-Day batting (1359 ± 157 vs. 1604 ± 438 m · h?1; effect size = 1.61). However, there was a marked trend for distance covered both striding and sprinting to be greater in the simulated innings than in One-Day batting (effect size > 1.2). Practically, the simulated batting innings may be used for match-realistic physical training and as a research protocol to assess the demands of prolonged, high-intensity cricket batting.  相似文献   

3.
The effects of training with overweight and underweight cricket balls on fast-bowling speed and accuracy were investigated in senior club cricket bowlers randomly assigned to either a traditional (n = 9) or modified-implement training (n = 7) group. Both groups performed bowling training three times a week for 10 weeks. The traditional training group bowled only regulation cricket balls (156 g), whereas the modified-implement training group bowled a combination of overweight (161-181 g), underweight (151-131 g) and regulation cricket balls. A radar gun measured the speed of 18 consecutive deliveries for each bowler before, during and after the training period. Video recordings of the deliveries were also analysed to determine bowling accuracy in terms of first-bounce distance from the stumps. Bowling speed, which was initially 108 +/- 5 km h(-1) (mean +/- standard deviation), increased in the modified-implement training group by 4.0 km x h(-1) and in the traditional training group by 1.3 km x h(-1) (difference, 2.7 km x h(-1); 90% confidence limits, 1.2 to 4.2 km x h(-1)). For a minimum worthwhile change of 5 km x h(-1), the chances that the true effect on bowling speed was practically beneficial/trivial/harmful were 1.0/99/< 0.1%. For bowling accuracy, the chances were 1/48/51%. This modified-implement training programme is not a useful training strategy for club cricketers.  相似文献   

4.
Fast bowling in cricket is an activity that is well recognised as having high injury prevalence and there has been debate regarding the most effective fast bowling technique. The aim of this study was to determine whether two-year coaching interventions conducted in a group of elite young fast bowlers resulted in fast bowling technique alteration. Selected kinematics of the bowling action of 14 elite young fast bowlers were measured using an 18 camera Vicon Motion Analysis system before and after two-year coaching interventions that addressed specific elements of fast bowling technique. Mann-Whitney tests were used to determine whether any changes in kinematic variables occurred pre- and post-intervention between those who had the coaching interventions and those who didn't. The coaching interventions, when applied, resulted in a more side-on shoulder alignment at back foot contact (BFC) (p = 0.002) and decreased shoulder counter-rotation (p = 0.001) however, there was no difference in the degree of change in back and front knee flexion angles or lower trunk side-flexion. This study has clearly shown that specific aspects of fast bowling technique are changeable over a two-year period in elite level fast bowlers and this may be attributed to coaching intervention.  相似文献   

5.
There have been few reports of advanced body composition profiles of elite fast bowlers in the sport of cricket. Therefore, the aim of the current study was to determine total, regional and unilateral body composition characteristics of elite English first-class cricket fast bowlers in comparison with matched controls, using dual-energy X-ray absorptiometry (DXA). Twelve male fast bowlers and 12 age-matched, non-athletic controls received one total-body DXA scan. Anthropometric data were obtained as well as left and right regional (arms, legs and trunk) fat mass, lean mass and bone mineral content. Fast bowlers were significantly taller and heavier than controls (< 0.05). Relative to body mass, fast bowlers possessed greater lean mass in the trunk (80.9 ± 3.7 vs. 76.7 ± 5.9%; = 0.047) and bone mineral content in the trunk (2.9 ± 0.3 vs. 2.6 ± 0.3%; = 0.049) and legs (5.4 ± 0.5 vs. 4.6 ± 0.6%; = 0.003). In the arm region, fast bowlers demonstrated significantly greater unilateral differences in bone mineral content (10.6 ± 6.6 vs. 4.5 ± 3.9%; = 0.012). This study provides specific body composition values for elite-level fast bowlers and highlights the potential for muscle and bone imbalances that may be useful for conditioning professionals. Our findings also suggest beneficial adaptations in body composition and bone mass in fast bowlers compared with their non-athletic counterparts.  相似文献   

6.
Abstract

The purpose of this study was to investigate the effect stride length has on ankle biomechanics of the leading leg with reference to the potential risk of injury in cricket fast bowlers. Ankle joint kinematic and kinetic data were collected from 51 male fast bowlers during the stance phase of the final delivery stride. The bowling cohort comprised national under-19, first class and international-level athletes. Bowlers were placed into either Short, Average or Long groups based on final stride length, allowing statistical differences to be measured. A multivariate analysis of variance with a Bonferroni post-hoc correction (α = 0.05) revealed significant differences between peak plantarflexion angles (Short-Long P = 0.005, Average and Long P = 0.04) and negative joint work (Average-Long P = 0.026). This study highlighted that during fast bowling the ankle joint of the leading leg experiences high forces under wide ranges of movement. As stride length increases, greater amounts of negative work and plantarflexion are experienced. These increases place greater loads on the ankle joint and move the foot into positions that make it more susceptible to injuries such as posterior impingement syndrome.  相似文献   

7.
Due to the high incidence of lumbar spine injury in fast bowlers, international cricket organisations advocate limits on workload for bowlers under 19 years of age in training/matches. The purpose of this study was to determine whether significant changes in either fast bowling technique or movement variability could be detected throughout a 10-over bowling spell that exceeded the recommended limit. Twenty-five junior male fast bowlers bowled at competition pace while three-dimensional kinematic and kinetic data were collected for the leading leg, trunk and bowling arm. Separate analyses for the mean and within-participant standard deviation of each variable were performed using repeated measures factorial analyses of variance and computation of effect sizes. No substantial changes were observed in mean values or variability of any kinematic, kinetic or performance variables, which instead revealed a high degree of consistency in kinematic and kinetic patterns. Therefore, the suggestion that exceeding the workload limit per spell causes technique- and loading-related changes associated with lumbar injury risk is not valid and cannot be used to justify the restriction of bowling workload. For injury prevention, the focus instead should be on the long-term effect of repeated spells and on the fast bowling technique itself.  相似文献   

8.
Despite its long history and global appeal, relatively little is known about the physiological and other requirements of cricket. It has been suggested that the physiological demands of cricket are relatively mild, except in fast bowlers during prolonged bowling spells in warm conditions. However, the physiological demands of cricket may be underestimated because of the intermittent nature of the activity and the generally inadequate understanding of the physiological demands of intermittent activity. Here, we review published studies of the physiology of cricket. We propose that no current model used to analyse the nature of exercise fatigue (i.e. the cardiovascular–anaerobic model, the energy supply–energy depletion model, the muscle power–muscle recruitment model) can adequately explain the fatigue experienced during cricket. A study of players in the South African national cricket team competing in the 1999 Cricket World Cup revealed that, in a variety of measures of explosive ('anaerobic') power and aerobic endurance capacity, they were as 'fit' as South African national rugby players competing in the 1999 Rugby World Cup. Yet, outwardly, the physiological demands of rugby would seem to be far greater than those of cricket. This poses the question: 'Why are these international cricketers so fit if the physiological demands of cricket are apparently so mild?' One possibility is that this specific group of athletes are unusually proficient in a variety of sports; many achieved high standards of performance in other sports, including rugby, before choosing to specialize in cricket. Hence their apparently high fitness may simply reflect a superior genetic physical endowment, necessary to achieve success in modern international sports, including cricket. Alternatively, it could be hypothesized that superior power and endurance fitness may be required to cope with the repeated eccentric muscle contractions required in turning and in bowling and which may account for fatigue and risk of injury in cricket. If this is the case, the fitness of cricketers may be increased and their risk of injury reduced by more specific eccentric exercise training programmes.  相似文献   

9.
ABSTRACT

Cricket fast bowlers are at a high risk of injury occurrence, which has previously been shown to be correlated to bowling workloads. This study aimed to develop and test an algorithm that can automatically, reliably and accurately detect bowling deliveries. Inertial sensor data from a Catapult OptimEye S5 wearable device was collected from both national and international level fast bowlers (n = 35) in both training and matches, at various intensities. A machine-learning based approach was used to develop the algorithm. Outputs were compared with over 20,000 manually recorded events. A high Matthews correlation coefficient (r = 0.945) showed very good agreement between the automatically detected bowling deliveries and manually recorded ones. The algorithm was found to be both sensitive and specific in training (96.3%, 98.3%) and matches (99.6%, 96.9%), respectively. Rare falsely classified events were typically warm-up deliveries or throws preceded by a run. Inertial sensors data processed by a machine-learning based algorithm provide a valid tool to automatically detect bowling events, whilst also providing the opportunity to look at performance metrics associated with fast bowling. This offers the possibility to better monitor bowling workloads across a range of intensities to mitigate injury risk potential and maximise performance.  相似文献   

10.
Abstract

This study compared physiological, physical and technical demands of Battlezone, traditional cricket training and one-day matches. Data were initially collected from 11 amateur, male cricket players (age: 22.2 ± 3.3 year, height: 1.82 ± 0.06 m body mass: 80.4 ± 9.8 kg) during four Battlezone and four traditional cricket training sessions encompassing different playing positions. Heart rate, blood lactate concentration, rating of perceived exertion and movement patterns of players were measured. Retrospective video analysis was performed to code for technical outcomes. Similar data were collected from 42 amateur, male cricket players (23.5 ± 4.7 year, 1.81 ± 0.07 m, 81.4 ± 11.4 kg) during one-day matches. Significant differences were found between Battlezone, traditional cricket training and one-day matches within each playing position. Specifically, Battlezone invoked the greatest physiological and physical demands from batsmen in comparison to traditional cricket training and one-day matches. However, the greatest technical demand for batsmen was observed during traditional cricket training. In regards to the other playing positions, a greater physiological, physical and technical demand was observed during Battlezone and traditional training than during one-day matches. These results suggest that the use of Battlezone and traditional cricket training provides players with a suitable training stimulus for replicating the physiological, physical and technical demands of one-day cricket.  相似文献   

11.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 ± 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 ± 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

12.
The elbow extension angle during bowling in cricket may be calculated from the positions of markers attached around the shoulder, elbow and wrist using an automated laboratory-based motion analysis system. The effects of two elbow-marker sets were compared. In the first, a pair of markers was placed medially and laterally close to the condyles while in the second a triad of markers was placed on the back of the upper arm close to the elbow. The root mean square (RMS) difference in elbow extension angle between the two methods at four key instants was 8° for 12 fast bowlers and 4° for 12 spin bowlers. When evaluated against video estimates of the elbow extension angle for the fast bowlers, the elbow extension angle calculated using the pair method had an RMS error of 2° while the triad method had an RMS error of 8°. The corresponding errors for the spin bowlers were 3° and 5°, respectively. It is thought that the greater errors associated with the triad is a consequence of soft tissue movement in this dynamic activity. This is consistent with the finding of greater error for the fast bowlers compared with the spin bowlers.  相似文献   

13.
Abstract

In the sport of cricket the objective of the “no-ball” law is to allow no performance advantage through elbow extension during ball delivery. However, recently it has been shown that even bowlers with actions that are considered within the law show some elbow extension. The objective of this study was to investigate: [1] the effect of elbow orientation during anatomical landmark digitisation and [2] the choice of upper arm tracking cluster on the measurement of elbow angles during cricket bowling.

We compared the mean elbow angles for four different elbow postures; with the joint flexed at approximately 130°, 90°, in full extension and with the elbow flexed with the humerus internally rotated, and two upper arm clusters in two different situations: [1] during a controlled movement of pure flexion-extension and [2] during cricket bowling. The digitised postures of the anatomical landmarks where the elbow was extended and at 90° of flexion were more repeatable than the other two postures. The recommendation of this study when analysing cricket bowling is to digitise the humeral epicondyles with the joint flexed at 90°, or in full extension, and to relate their positions to an upper arm cluster fixed close to the elbow.  相似文献   

14.
This modelling study sought to describe the relationships between elbow joint kinematics and wrist joint linear velocity in cricket fast bowlers, and to assess the sensitivity of wrist velocity to systematic manipulations of empirical joint kinematic profiles. A 12-camera Vicon motion analysis system operating at 250 Hz recorded the bowling actions of 12 high performance fast bowlers. Empirical elbow joint kinematic data were entered into a cricket bowling specific “Forward Kinematic Model” and then subsequently underwent fixed angle, angular offset and angle amplification manipulations. A combination of 20° flexion and 20° abduction at the elbow was shown to maximise wrist velocity within the experimental limits. An increased elbow flexion offset manipulation elicited an increase in wrist velocity. Amplification of elbow joint flexion–extension angular displacement indicated that, contrary to previous research, elbow extension range of motion and angular velocity at the time of ball release were negatively related to wrist velocity. Some relationships between manipulated joint angular waveforms and wrist velocity were non-linear, supporting the use of a model that accounts for the non-linear relationships between execution and outcome variables in assessing the relationships between elbow joint kinematics and wrist joint velocity in cricket fast bowlers.  相似文献   

15.
Spin bowling is generally coached using a standard technical framework, but this practice has not been based upon a comparative biomechanical analysis of leg-spin and off-spin bowling. This study analysed the three-dimensional (3D) kinematics of 23 off-spin and 20 leg-spin bowlers using a Cortex motion analysis system to identify how aspects of the respective techniques differed. A multivariate ANOVA found that certain data tended to validate some of the stated differences in the coaching literature. Off-spin bowlers had a significantly shorter stride length (p = 0.006) and spin rate (p = 0.001), but a greater release height than leg-spinners (p = 0.007). In addition, a number of other kinematic differences were identified that were not previously documented in coaching literature. These included a larger rear knee flexion (p = 0.007), faster approach speed (p < 0.001), and flexing elbow action during the arm acceleration compared with an extension action used by most of the off-spin bowlers. Off-spin and leg-spin bowlers also deviated from the standard coaching model for the shoulder alignment, front knee angle at release, and forearm mechanics. This study suggests that off-spin and leg-spin are distinct bowling techniques, supporting the development of two different coaching models in spin bowling.  相似文献   

16.
ABSTRACT

Fast bowling is categorised into four action types: side-on, front-on, semi-open and mixed; however, little biomechanical comparison exists between action types in junior fast bowlers. This study investigated whether there are significant differences between action-type mechanics in junior fast bowlers. Three-dimensional kinematic and kinetic analyses were completed on 60 junior male fast bowlers bowling a five-over spell. Mixed-design factorial analyses of variance were used to test for differences between action-type groups across the phases of the bowling action. One kinetic difference was observed between groups, with a higher vertical ground reaction force loading rate during the front-foot contact phase in mixed and front-on compared to semi-open bowlers; no other significant group differences in joint loading occurred. Significant kinematic differences were observed between the front-on, semi-open and mixed action types during the front-foot contact phase for the elbow and trunk. Significant kinematic differences were also present for the ankle, T12-L1, elbow, trunk and pelvis during the back-foot phase. Overall, most differences in action types for junior fast bowlers occurred during the back-foot contact phase, particularly trunk rotation and T12-L1 joint angles/ranges of motion, where after similar movement patterns were utilized across groups during the front-foot contact phase.  相似文献   

17.
In order to get bounce and movement seam bowlers need to bowl the ball “into” the pitch. Standard deliveries by elite players are typically projected at around 7° below horizontal. In contrast, young players currently often need to release the ball almost horizontally in an effort to get the ball to bounce close enough to the batter. We anticipated that shortening the pitch could be a simple way to help young bowlers to release the ball at a better angle and with more consistency. Twenty county or best in club age group under 10 and under 11 seam bowlers were analysed bowling indoors on two different pitch lengths. They were found to project the ball on average 3.4° further below horizontal on a 16 yard pitch compared with a 19 yard pitch, while ball speed and position at release changed negligibly. Pitch length did not affect the consistency of the release parameters. The shorter pitch led to a ball release angle closer to that of elite bowlers without changing release speed, and this should enable players to achieve greater success and develop more variety in their bowling.  相似文献   

18.
Physiological requirements of cricket   总被引:1,自引:1,他引:0  
Despite its long history and global appeal, relatively little is known about the physiological and other requirements of cricket. It has been suggested that the physiological demands of cricket are relatively mild, except in fast bowlers during prolonged bowling spells in warm conditions. However, the physiological demands of cricket may be underestimated because of the intermittent nature of the activity and the generally inadequate understanding of the physiological demands of intermittent activity. Here, we review published studies of the physiology of cricket. We propose that no current model used to analyse the nature of exercise fatigue (i.e. the cardiovascular-anaerobic model, the energy supply-energy depletion model, the muscle power-muscle recruitment model) can adequately explain the fatigue experienced during cricket. A study of players in the South African national cricket team competing in the 1999 Cricket World Cup revealed that, in a variety of measures of explosive ('anaerobic') power and aerobic endurance capacity, they were as 'fit' as South African national rugby players competing in the 1999 Rugby World Cup. Yet, outwardly, the physiological demands of rugby would seem to be far greater than those of cricket. This poses the question: 'Why are these international cricketers so fit if the physiological demands of cricket are apparently so mild?' One possibility is that this specific group of athletes are unusually proficient in a variety of sports; many achieved high standards of performance in other sports, including rugby, before choosing to specialize in cricket. Hence their apparently high fitness may simply reflect a superior genetic physical endowment, necessary to achieve success in modern international sports, including cricket. Alternatively, it could be hypothesized that superior power and endurance fitness may be required to cope with the repeated eccentric muscle contractions required in turning and in bowling and which may account for fatigue and risk of injury in cricket. If this is the case, the fitness of cricketers may be increased and their risk of injury reduced by more specific eccentric exercise training programmes.  相似文献   

19.
Cricket     
The laws of bowling in cricket state ‘a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand’. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not ‘throwing’ but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two‐link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号