首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
The purpose of this study was to provide a more detailed analysis of performance in cross-country skiing by combining findings from a differential global positioning system (dGPS), metabolic gas measurements, speed in different sections of a ski-course and treadmill threshold data. Ten male skiers participated in a freestyle skiing field test (5.6?km), which was performed with dGPS and metabolic gas measurements. A treadmill running threshold test was also performed and the following parameters were derived: anaerobic threshold, threshold of decompensated metabolic acidosis, respiratory exchange ratio = 1, onset of blood lactate accumulation and peak oxygen uptake ([Vdot]O2peak). The combined dGPS and metabolic gas measurements made detailed analysis of performance possible. The strongest correlations between the treadmill data and final skiing field test time were for [Vdot]O2peak (l?·?min?1), respiratory exchange ratio = 1 (l?·?min?1) and onset of blood lactate accumulation (l?·?min?1) (r = ?0.644 to ??0.750). However, all treadmill test data displayed stronger associations with speed in different stretches of the course than with final time, which stresses the value of a detailed analysis of performance in cross-country skiing. Mean oxygen uptake ([Vdot]O2) in a particular stretch in relation to speed in the same stretch displayed its strongest correlation coefficients in most stretches when [Vdot]O2 was presented in units litres per minute, rather than when [Vdot]O2 was normalized to body mass (ml?·?kg?1?·?min?1 and ml?·?min?1?·?kg?2/3). This suggests that heavy cross-country skiers have an advantage over their lighter counterparts. In one steep uphill stretch, however, [Vdot]O2 (ml?·?min?1?·?kg?2/3) displayed the strongest association with speed, suggesting that in steep uphill sections light skiers could have an advantage over heavier skiers.  相似文献   

2.
Abstract

The aims of the study were to modify the training impulse (TRIMP) method of quantifying training load for use with intermittent team sports, and to examine the relationship between this modified TRIMP (TRIMPMOD) and changes in the physiological profile of team sport players during a competitive season. Eight male field hockey players, participating in the English Premier Division, took part in the study (mean±s: age 26±4 years, body mass 80.8±5.2 kg, stature 1.82±0.04 m). Participants performed three treadmill exercise tests at the start of the competitive season and mid-season: a submaximal test to establish the treadmill speed at a blood lactate concentration of 4 mmol · l?1; a maximal incremental test to determine maximal oxygen uptake ([Vdot]O2max) and peak running speed; and an all-out constant-load test to determine time to exhaustion. Heart rate was recorded during all training sessions and match-play, from which TRIMPMOD was calculated. Mean weekly TRIMPMOD was correlated with the change in [Vdot]O2max and treadmill speed at a blood lactate concentration of 4 mmol · l?1 from the start of to mid-season (P<0.05). The results suggest that TRIMPMOD is a means of quantifying training load in team sports and can be used to prescribe training for the maintenance or improvement of aerobic fitness during the competitive season.  相似文献   

3.
Abstract

The aim of this study was to determine the effect of 12 weeks of training on the critical velocity and maximal lactate steady state of elite swimmers. The tests to determine critical velocity and maximal lactate steady state were performed before and after 12 weeks of training. Critical velocity after 12 weeks of training was significantly higher than before training (1.45±0.10 m · s?1 vs. 1.41±0.11 m · s?1). In contrast, no significant differences in the velocity at maximal lactate steady state were observed before and after training (1.41±0.10 m · s?1 vs. 1.43±0.10 m · s?1). There was also a decrease in mean lactate concentration after 12 weeks of training. Before training, the velocity at maximal lactate steady state occurred at 100% of critical velocity, with a mean lactate concentration of 4.34 mmol · l?1. After training, the velocity at maximal lactate steady state occurred at 98% of critical velocity, with a reduced mean lactate concentration of 3.69 mmol · l?1. Based on these results, it would appear that 12 weeks of training was enough to promote an increase in critical velocity. Although no significant differences in the velocity at maximal lactate steady state were observed before and after training, the decrease in mean lactate concentration after training demonstrated greater efficiency of the aerobic system, leading to less wear during the tests.  相似文献   

4.
This study examined the effects of different work?–?rest durations during 40?min intermittent treadmill exercise and subsequent running performance. Eight males (mean?±?s: age 24.3?±?2.0 years, body mass 79.4?±?7.0?kg, height 1.77?±?0.05?m) undertook intermittent exercise involving repeated sprints at 120% of the speed at which maximal oxygen uptake (v-[Vdot]O2max) was attained with passive recovery between each one. The work?–?rest ratio was constant at 1:1.5 with trials involving short (6:9?s), medium (12:18?s) or long (24:36?s) work?–?rest durations. Each trial was followed by a performance run to volitional exhaustion at 150% v-[Vdot]O2max. After 40?min, mean exercise intensity was greater during the long (68.4?±?9.3%) than the short work?–?rest trial (54.9?±?8.1% [Vdot]O2max; P?<?0.05). Blood lactate concentration at 10?min was higher in the long and medium than in the short work?–?rest trial (6.1?±?0.8, 5.2?±?0.9, 4.5?±?1.3?mmol?·?l?1, respectively; P?<?0.05). The respiratory exchange ratio was consistently higher during the long than during the medium and short work?–?rest trials (P <?0.05). Plasma glucose concentration was higher in the long and medium than in the short work?–?rest trial after 40?min of exercise (5.6?±?0.1, 6.6?±?0.2 and 5.3?±?0.5?mmol?·?l?1, respectively; P?<?0.05). No differences were observed between trials for performance time (72.7?±?14.9, 63.2?±?13.2, 57.6?±?13.5?s for the short, medium and long work?–?rest trial, respectively; P = 0.17), although a relationship between performance time and 40?min plasma glucose was observed (P?<?0.05). The results show that 40?min of intermittent exercise involving long and medium work?–?rest durations elicits greater physiological strain and carbohydrate utilization than the same amount of intermittent exercise undertaken with a short work?–?rest duration.  相似文献   

5.
Abstract

The aims of the study were to investigate blood lactate recovery and respiratory variables during diagonal skiing of variable intensity in skiers at different performance levels. Twelve male cross-country skiers classified as elite (n=6; [Vdot]O2max=73±3 ml · kg?1 · min?1) or moderately trained (n=6; [Vdot]O2max=61±5 ml · kg?1 · min?1) performed a 48-min variable intensity protocol on a treadmill using the diagonal stride technique on roller skis, alternating between 3 min at 90% and 6 min at 70% of [Vdot]O2max. None of the moderately trained skiers were able to complete the variable intensity protocol and there was a difference in time to exhaustion between the two groups (elite: 45.0±7.3 min; moderately trained: 31.4±10.4 min) (P<0.05). The elite skiers had lower blood lactate concentrations and higher blood base excess concentrations at all 70% workloads than the moderately trained skiers (all P<0.05). In contrast, [Vdot] E/[Vdot]O2 and [Vdot] E/[Vdot]CO2 at the 70% [Vdot]O2max workloads decreased independently of group (P<0.05). Partial correlations showed that [Vdot]O2max was related to blood lactate at the first and second intervals at 70% of [Vdot]O2max (r=?0.81 and r=?0.82; both P<0.01) but not to [Vdot] E/[Vdot]O2, [Vdot] E/[Vdot]CO2 or the respiratory exchange ratio. Our results demonstrate that during diagonal skiing of variable intensity, (1) elite skiers have superior blood lactate recovery compared with moderately trained skiers, who did not show any lactate recovery at 70% of [Vdot]O2max, suggesting it is an important characteristic for performance; and (2) the decreases in respiratory exchange ratio, [Vdot] E/[Vdot]O2, and [Vdot] E/[Vdot]CO2 do not differ between elite and moderately trained skiers.  相似文献   

6.
The aims of this study were to quantify the effects of factors such as mode of exercise, body composition and training on the relationship between heart rate and physical activity energy expenditure (measured in kJ?·?min?1) and to develop prediction equations for energy expenditure from heart rate. Regularly exercising individuals (n = 115; age 18?–?45 years, body mass 47?–?120?kg) underwent a test for maximal oxygen uptake ([Vdot]O2max test), using incremental protocols on either a cycle ergometer or treadmill; [Vdot]O2max ranged from 27 to 81?ml?·?kg?1?·?min?1. The participants then completed three steady-state exercise stages on either the treadmill (10?min) or the cycle ergometer (15?min) at 35%, 62% and 80% of [Vdot]O2max, corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and respiratory exchange ratio data were collected during each stage. A mixed-model analysis identified gender, heart rate, weight, [Vdot]2max and age as factors that best predicted the relationship between heart rate and energy expenditure. The model (with the highest likelihood ratio) was used to estimate energy expenditure. The correlation coefficient (r) between the measured and estimated energy expenditure was 0.913. The model therefore accounted for 83.3% (R 2) of the variance in energy expenditure in this sample. Because a measure of fitness, such as [Vdot]O2max, is not always available, a model without [Vdot]O2max included was also fitted. The correlation coefficient between the measured energy expenditure and estimates from the mixed model without [Vdot]O2max was 0.857. It follows that the model without a fitness measure accounted for 73.4% of the variance in energy expenditure in this sample. Based on these results, we conclude that it is possible to estimate physical activity energy expenditure from heart rate in a group of individuals with a great deal of accuracy, after adjusting for age, gender, body mass and fitness.  相似文献   

7.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

8.
The aims of this study were: (1) to identify the exercise intensity that corresponds to the maximal lactate steady state in adolescent endurance-trained runners; (2) to identify any differences between the sexes; and (3) to compare the maximal lactate steady state with commonly cited fixed blood lactate reference parameters. Sixteen boys and nine girls volunteered to participate in the study. They were first tested using a stepwise incremental treadmill protocol to establish the blood lactate profile and peak oxygen uptake (VO2). Running speeds corresponding to fixed whole blood lactate concentrations of 2.0, 2.5 and 4.0 mmol x l(-1) were calculated using linear interpolation. The maximal lactate steady state was determined from four separate 20-min constant-speed treadmill runs. The maximal lactate steady state was defined as the fastest running speed, to the nearest 0.5 km x h(-1), where the change in blood lactate concentration between 10 and 20 min was < 0.5 mmol x l(-1). Although the boys had to run faster than the girls to elicit the maximal lactate steady state (15.7 vs 14.3 km x h(-1), P < 0.01), once the data were expressed relative to percent peak VO2 (85 and 85%, respectively) and percent peak heart rate (92 and 94%, respectively), there were no differences between the sexes (P > 0.05). The running speed and percent peak VO2 at the maximal lactate steady state were not different to those corresponding to the fixed blood lactate concentrations of 2.0 and 2.5 mmol x l(-1) (P > 0.05), but were both lower than those at the 4.0 mmol x l(-1) concentration (P < 0.05). In conclusion, the maximal lactate steady state corresponded to a similar relative exercise intensity as that reported in adult athletes. The running speed, percent peak VO2 and percent peak heart rate at the maximal lactate steady state are approximated by the fixed blood lactate concentration of 2.5 mmol x l(-1) measured during an incremental treadmill test in boys and girls.  相似文献   

9.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

10.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

11.
Abstract

The aims of this study were two-fold: (1) to consider the criterion-related validity of the multi-stage fitness test (MSFT) by comparing the predicted maximal oxygen uptake ([Vdot]O2max) and distance travelled with peak oxygen uptake ([Vdot]O2peak) measured using a wheelchair ergometer (n = 24); and (2) to assess the reliability of the MSFT in a sub-sample of wheelchair athletes (n = 10) measured on two occasions. Twenty-four trained male wheelchair basketball players (mean age 29 years, s = 6) took part in the study. All participants performed a continuous incremental wheelchair ergometer test to volitional exhaustion to determine [Vdot]O2peak, and the MSFT on an indoor wooden basketball court. Mean ergometer [Vdot]O2peak was 2.66 litres · min?1 (s = 0.49) and peak heart rate was 188 beats · min?1 (s = 10). The group mean MSFT distance travelled was 2056 m (s = 272) and mean peak heart rate was 186 beats · min?1 (s = 11). Low to moderate correlations (ρ = 0.39 to 0.58; 95% confidence interval [CI]: ?0.02 to 0.69 and 0.23 to 0.80) were found between distance travelled in the MSFT and different expressions of wheelchair ergometer [Vdot]O2peak. There was a mean bias of ?1.9 beats · min?1 (95% CI: ?5.9 to 2.0) and standard error of measurement of 6.6 beats · min?1 (95% CI: 5.4 to 8.8) between the ergometer and MSFT peak heart rates. A similar comparison of ergometer and predicted MSFT [Vdot]O2peak values revealed a large mean systematic bias of 15.3 ml · kg?1 · min?1 (95% CI: 13.2 to 17.4) and standard error of measurement of 3.5 ml · kg?1 · min?1 (95% CI: 2.8 to 4.6). Small standard errors of measurement for MSFT distance travelled (86 m; 95% CI: 59 to 157) and MSFT peak heart rate (2.4 beats · min?1; 95% CI: 1.7 to 4.5) suggest that these variables can be measured reliably. The results suggest that the multi-stage fitness test provides reliable data with this population, but does not fully reflect the aerobic capacity of wheelchair athletes directly.  相似文献   

12.
Abstract

The purpose of this study was to determine the relationship between female distance running performance on a 10 km road race and body composition, maximal aerobic power ([Vdot]O2 max ), running economy (steady-state [Vdot]O2 at standardized speeds), and the fractional utilization of [Vdot]O2max at submaximal speeds (% [Vdot]O2max ). The subjects were 14 trained and competition–experienced female runners. The subjects averaged 43.7 min on the 10 km run, 53.0 ml · kg?1 · min?1 on [Vdot]O2max , and 33.9, 37.7, and 41.8 ml · kg?1 · min?1 for steady-state [Vdot]O2 at three standardized running paces (177, 196, and 215 m · min?1). The mean values for fractional utilization of aerobic capacity for these three submaximal speeds were 64.3, 71.4, and 79.3% [Vdot]O2max , respectively. Significant (p < 0.01) relationships with performance were found for [Vdot]O2max (r = ?0.66) and % [Vdot]O2max at a standardized speed (r = 0.65). No significant (p > 0.05) relationships were found between running performance and either running economy or relative body fat. As with male heterogeneous groups, trained female road racing performance is significantly related to [Vdot]O2max and % [Vdot]O2max , but not related to body composition or running economy. It was further concluded that on a 10 km road race, trained females operate at a % [Vdot]O2max similar to that of their trained male counterparts.  相似文献   

13.
Abstract

The present study was designed to examine physiological responses during motocross riding. Nine Finnish A-level motocross riders performed a 15-min ride at a motocross track and a test of maximal oxygen uptake ([Vdot]O2max) in the laboratory. Cardiopulmonary strain was measured continuously during the ride as well as in the [Vdot]O2max test. During the ride, mean [Vdot]O2 was 32 ml · kg?1 · min?1 (s = 4), which was 71% (s = 12) of maximum, while ventilation (V E) was 73% (s = 15) of its maximum. The relative [Vdot]O2 and V E values during the riding correlated with successful riding performance (r = 0.80, P < 0.01 and r = 0.79, P < 0.01, respectively). Mean heart rate was maintained at 95% (s = 7) of its maximum. Mean blood lactate concentration was 5.0 mmol · l?1 (s = 2.0) after the ride. A reduction of 16% (P < 0.001) in maximal isometric handgrip force was observed. In conclusion, motocross causes riders great physical stress. Both aerobic and anaerobic metabolism is required for the isometric and dynamic muscle actions experienced during a ride.  相似文献   

14.
Abstract

The purpose of this study was to assess the relationships among ventilatory threshold T(vent), running economy and distance running performance in a group (N=9) of trained experienced male runners with comparable maximum oxygen uptake ([Vdot]O2 max). Maximal oxygen uptake and submaximal steady state oxygen uptake were measured using open circuit spirometry during treadmill exercise. Ventilatory threshold was determined during graded treadmill exercise using non-invasive techniques, while distance running performance was assessed by the best finish time in two 10-kilometer (km) road races. The subjects averaged 33.8 minutes on the 10km runs, 68.6 ml · kg -1 · min -1 for [Vdot]O2 max, and 48.1 ml · kg -1 · min -1 for steady state [Vdot]O2 running at 243 meters · min -1. The T(vent) (first deviation from linearity of [Vdot]E, [Vdot]CO 2 ) occurred at an oxygen consumption of 41.9 ml · kg -1 · min -1. The relationship between running economy and performance was r = .51 (p>0.15) and the relationship between T(vent) and performance was r = .94 (p < 0.001). Applying stepwise multiple linear regression, the multiple R did not increase significantly with the addition of variables to the T(vent); however, the combination of [Vdot]O2 max, running economy and T(vent) was determined to account for the greatest amount of total variance (89%). These data suggest that among trained and experienced runners with similar [Vdot]O2 max, T(vent) can account for a large portion of the variance in performance during a 10km race.  相似文献   

15.
Abstract

In this study, we investigated the effect of biological maturation on maximal oxygen uptake ([Vdot]O2max) and ventilatory thresholds (VT1 and VT2) in 110 young soccer players separated into pubescent and post-pubescent groups.. Maximal oxygen uptake and [Vdot]O2 corresponding to VT1 and VT2 were expressed as absolute values, ratio standards, theoretical exponents, and experimentally observed exponents. Absolute [Vdot]O2 (ml · min?1) was different between groups for VT1, VT2, and [Vdot]O2max. Ratio standards (ml · kg?1 · min?1) were not significantly different between groups for VT1, VT2, and [Vdot]O2max. Theoretical exponents (ml · kg?0.67 · min?1 and ml · kg?0.75 · min?1) were not properly adjusted for the body mass effects on VT1, VT2, and [Vdot]O2max. When the data were correctly adjusted using experimentally observed exponents, VT1 (ml · kg?0.94 · min?1) and VT2 (ml · kg?0.95 · min?1) were not different between groups. The experimentally observed exponent for [Vdot]O2max (ml · kg?0.90 · min?1) was different between groups (P = 0.048); however, this difference could not be attributed to biological maturation. In conclusion, biological maturation had no effect on VT1, VT2 or [Vdot]O2max when the effect of body mass was adjusted by experimentally observed exponents. Thus, when evaluating the physiological performance of young soccer players, allometric scaling needs to be taken into account instead of using theoretical approaches.  相似文献   

16.
Abstract

The aim of this study was to examine the effects of exercise type, field dimensions, and coach encouragement on the intensity and reproducibility of small-sided games. Data were collected on 20 amateur soccer players (body mass 73.1 ± 8.6 kg, stature 1.79 ± 0.05 m, age 24.5 ± 4.1 years, [Vdot]O2max 56.3 ± 4.8 ml · kg?1 · min?1). Aerobic interval training was performed during three-, four-, five- and six-a-side games on three differently sized pitches, with and without coach encouragement. Heart rate, rating of perceived exertion (RPE) on the CR10-scale, and blood lactate concentration were measured. Main effects were found for exercise type, field dimensions, and coach encouragement (P < 0.05), but there were no interactions between any of the variables (P > 0.15). During a six-a-side game on a small pitch without coach encouragement, exercise intensity was 84 ± 5% of maximal heart rate, blood lactate concentration was 3.4 ± 1.0 mmol · l?1, and the RPE was 4.8. During a three-a-side game on a larger pitch with coach encouragement, exercise intensity was 91 ± 2% of maximal heart rate, blood lactate concentration was 6.5 ± 1.5 mmol · l?1, and the RPE was 7.2. Typical error expressed as a coefficient of variation ranged from 2.0 to 5.4% for percent maximal heart rate, from 10.4 to 43.7% for blood lactate concentration, and from 5.5 to 31.9% for RPE. The results demonstrate that exercise intensity during small-sided soccer games can be manipulated by varying the exercise type, the field dimensions, and whether there is any coach encouragement. By using different combinations of these factors, coaches can modulate exercise intensity within the high-intensity zone and control the aerobic training stimulus.  相似文献   

17.
Abstract

Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption ([Vdot]O2) determined every 15 s. The mean (± s) time-trial time was 359 ± 33 s, with a mean power output of 65 ± 16 W and mean stroke rate of 56 ± 4 strokes · min?1. Mean values for peak [Vdot]O2, peak heart rate, and mean heart rate were 3.17 ± 0.67 litres · min?1, 177 ± 11 beats · min?1, and 164 ± 12 beats · min?1 respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak [Vdot]O2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

18.
Abstract

The aim of the present study was to determine the effect of a carbohydrate mouthwash on running time-trial performance. On two separate occasions, seven recreationally active males ([Vdot]O2max 57.8 ml · kg?1 · min?1, s = 3.7) completed a preloaded (15 min at 65%[Vdot]O2max) time-trial of 45 min in duration on a motorized treadmill. At 6-min intervals during the preload and time-trial, participants were given either a 6% maltodextrin, 3% lemon juice solution (carbohydrate trial) or a 3% lemon juice placebo mouthwash (placebo trial) in a double-blind, randomized crossover design. Heart rate, oxygen consumption ([Vdot]O2), respiratory exchange ratio (RER), and ratings of perceived exertion (RPE) were measured during the preload, and blood glucose and lactate were measured before and after the preload and time-trial. There were no significant differences in distance covered between trials (carbohydrate: 9333 m, s = 988; placebo: 9309 m, s = 993). Furthermore, there were no significant between-trial differences in heart rate and running speed during the time-trial, or [Vdot]O2, RER or RPE during the preload. Blood lactate and glucose increased as a result of the exercise protocol, with no between-trial differences. In conclusion, there was no positive effect of a carbohydrate mouthwash on running performance of ~1 h duration.  相似文献   

19.
Abstract

This study investigated the effects of acute caffeine ingestion following short-term creatine supplementation on an incremental cycling to exhaustion task. Twelve active males performed the task under three conditions: baseline condition (BASE, no ergogenic aid), creatine plus caffeine condition (CRE + CAF), and creatine with placebo condition (CRE + PLA). Following the establishment of BASE condition, participants were administered CRE + CAF (0.3 g·kg?1·day?1 of creatine for 5 days followed by 6 mg·kg?1 of caffeine 1 h prior to testing) and CRE + PLA (0.3 g·kg?1·day?1 of creatine for 5 days followed by 6 mg·kg?1 of placebo 1 h prior to testing) in a double-blind, randomized crossover and counterbalancing protocol. No significant differences were observed in relative maximal oxygen consumption ([Vdot]O2max) (51.7±5.5, 52.8±4.9 and 51.3±5.6 ml·kg?1·min?1 for BASE, CRE + CAF and CRE + PLA, respectively; P>0.05) and absolute [Vdot]O2max (3.6±0.4, 3.7±0.4 and 3.5±0.5 l·min?1 for BASE, CRE + CAF and CRE + PLA, respectively; P>0.05). Blood samples indicated significantly higher blood lactate and glucose concentrations in the CRE + CAF among those in the BASE or CRE + PLA condition during the test (P<0.05). The time to exhaustion on a cycling ergometer was significantly longer for CRE + CAF (1087.2±123.9 s) compared with BASE (1009.2±86.0 s) or CRE + PLA (1040.3±96.1 s). This study indicated that a single dose of caffeine following short-term creatine supplementation did not hinder the creatine–caffeine interaction. In fact, it lengthened the time to exhaustion during an incremental maximum exercise test. However, this regime might lead to the accumulation of lactate in the blood.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号