首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inter-day training reliability and variability in artistic gymnastics vaulting was determined using a customised infra-red timing gate and contact mat timing system. Thirteen Australian high performance gymnasts (eight males and five females) aged 11–23 years were assessed during two consecutive days of normal training. Each gymnast completed a number of vault repetitions per daily session. Inter-day variability of vault run-up velocities (at ‐18 to ‐12 m, ‐12 to ‐6 m, ‐6 to ‐2 m, and ‐2 to 0 m from the nearest edge of the beat board), and board contact, pre-flight, and table contact times were determined using mixed modelling statistics to account for random (within-subject variability) and fixed effects (gender, number of subjects, number of trials). The difference in the mean (Mdiff) and Cohen's effect sizes for reliability assessment and intra-class correlation coefficients, and the coefficient of variation percentage (CV%) were calculated for variability assessment. Approach velocity (‐18 to ‐2 m, CV = 2.4–7.8%) and board contact time (CV = 3.5%) were less variable measures when accounting for day-to-day performance differences, than pre-flight time (CV = 17.7%) and table contact time (CV = 20.5%). While pre-flight and table contact times are relevant training measures, approach velocity and board contact time are more reliable when quantifying vaulting performance.  相似文献   

2.
The purpose of this study was to quantify the inter-session reliability of force–velocity–power profiling and estimated maximal strength in youth. Thirty-six males (11–15 years old) performed a ballistic supine leg press test at five randomized loads (80%, 100%, 120%, 140%, and 160% body mass) on three separate occasions. Peak and mean force, power, velocity, and peak displacement were collected with a linear position transducer attached to the weight stack. Mean values at each load were used to calculate different regression lines and estimate maximal strength, force, velocity, and power. All variables were found reliable (change in the mean [CIM] = ? 1 to 14%; coefficient of variation [CV] = 3–18%; intraclass correlation coefficient [ICC] = 0.74–0.99), but were likely to benefit from a familiarization, apart from the unreliable maximal force/velocity ratio (CIM = 0–3%; CV = 23–25%; ICC = 0.35–0.54) and load at maximal power (CIM = ? 1 to 2%; CV = 10–13%; ICC = 0.26–0.61). Isoinertial force–velocity–power profiling and maximal strength in youth can be assessed after a familiarization session. Such profiling may provide valuable insight into neuromuscular capabilities during growth and maturation and may be used to monitor specific training adaptations.  相似文献   

3.
This study aimed to establish the reliability of a novel netball task using a single-leg horizontal jump (SLHJ). Twenty-five females 18–39 years performed SLHJs for maximal displacement and ground-reaction forces. Participants completed two trials for each leg on two occasions separated by 6 weeks of pre-season netball training. Paired sample t tests highlighted no significant differences within trials for either limb. Significant (p ≤ .05) changes are reported for displacement, and dominant and nondominant X and Y forces, after 6-week netball training. SLHJ displacement showed excellent within-session reliability at baseline for dominant (intraclass correlation coefficient (ICC(2,1)) = 0.922, 95% confidence interval (CI) 0.826–0.966) and nondominant (ICC(2,1) = 0.925; 95% CI 0.832–0.967) landings. At 6 weeks, within-session reliability remained excellent for dominant (ICC(2,1) = 0.967, 95% CI 0.926–0.985) and nondominant ICC 0.968 (95% CI 0.929–0.986) landings. The reliability of the single-leg horizontal jump task for netball remained strong after 6 weeks of netball training.  相似文献   

4.
Examining a countermovement jump (CMJ) force-time curve related to net impulse might be useful in monitoring athletes' performance. This study aimed to investigate the reliability of alternative net impulse calculation and net impulse characteristics (height, width, rate of force development, shape factor, and proportion) and validate against the traditional calculation in the CMJ. Twelve participants performed the CMJ in two sessions (48 hours apart) for test–retest reliability. Twenty participants were involved for the validity assessment. Results indicated intra-class correlation coefficient (ICC) of ≥ 0.89 and coefficient of variation (CV) of ≤ 5.1% for all of the variables except for rate of force development (ICC = 0.78 and CV = 22.3%). The relationship between the criterion and alternative calculations was r = 1.00. While the difference between them was statistically significant (245.96 ± 63.83 vs. 247.14 ± 64.08 N s, p < 0.0001), the effect size was trivial and deemed practically minimal (d = 0.02). In conclusion, variability of rate of force development will pose a greater challenge in detecting performance changes. Also, the alternative calculation can be used practically in place of the traditional calculation to identify net impulse characteristics and monitor and study athletes' performance in greater depth.  相似文献   

5.
The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach’s alpha (α), coefficient of variation and Bland–Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P < 0.001; Bland–Altman bias = 1.1 ± 0.5 cm, P < 0.001). In comparison with the force platform, My Jump showed good validity for the CMJ height (= 0.995, P < 0.001). The results of the present study showed that CMJ height can be easily, accurately and reliably evaluated using a specially developed iPhone 5 s app.  相似文献   

6.
Eccentric contractions that provide spring energy can also cause muscle damage. The aim of this study was to explore leg and vertical stiffness following muscle damage induced by an eccentric exercise protocol. Twenty active males completed 60 minutes of backward-walking on a treadmill at 0.67 m/s and a gradient of ? 8.5° to induce muscle damage. Tests were performed immediately before; immediately post; and 24, 48, and 168 hours post eccentric exercise. Tests included running at 3.35 m/s and hopping at 2.2 Hz using single- and double-legged actions. Leg and vertical stiffness were measured from kinetic and kinematic data, and electromyography (EMG) of five muscles of the preferred limb were recorded during hopping. Increases in pain scores (over 37%) occurred post-exercise and 24 and 48 hours later (p < 0.001). A 7% decrease in maximal voluntary contraction occurred immediately post-exercise (p = 0.019). Changes in knee kinematics during single-legged hopping were observed 168 hours post (p < 0.05). No significant changes were observed in EMG, creatine kinase activity, leg, or vertical stiffness. Results indicate that knee mechanics may be altered to maintain consistent levels of leg and vertical stiffness when eccentric exercise-induced muscle damage is present in the lower legs.  相似文献   

7.
Abstract

There has been no previous investigation of the concurrent validity and reliability of the current 5 Hz global positioning system (GPS) to assess sprinting speed or the reliability of integrated GPS–accelerometer technology. In the present study, we wished to determine: (1) the concurrent validity and reliability of a GPS and timing gates to measure sprinting speed or distance, and (2) the reliability of proper accelerations recorded via GPS–accelerometer integration. Nineteen elite youth rugby league players performed two over-ground sprints and were simultaneously assessed using GPS and timing gates. The GPS measurements systematically underestimated both distance and timing gate speed. The GPS measurements were reliable for all variables of distance and speed (coefficient of variation [CV] = 1.62% to 2.3%), particularly peak speed (95% limits of agreement [LOA] = 0.00 ± 0.8 km · h?1; CV = 0.78%). Timing gates were more reliable (CV = 1% to 1.54%) than equivalent GPS measurements. Accelerometer measurements were least reliable (CV = 4.69% to 5.16%), particularly for the frequency of proper accelerations (95% LOA = 1.00 ± 5.43; CV = 14.12%). Timing gates and GPS were found to reliably assess speed and distance, although the validity of the GPS remains questionable. The error found in accelerometer measurements indicates the limits of this device for detecting changes in performance.  相似文献   

8.
Quantifying soft tissue motion following impact is important in human motion analysis as soft tissues attenuate potentially injurious forces resulting from activities such as running and jumping. This study determined the reliability of leg soft tissue position and velocity following heel impacts. A grid of black dots was applied to the skin of the right leg and foot (n = 20). Dots were automatically detected (ProAnalyst®) from high-speed records of pendulum and drop impacts. Three trained measurers selected columns of dots on each participant for analysis; one measurer 6 months later. Between- and within-measurer differences in kinematic variables were all relatively small (<0.8 cm for position; <3.7 cm/s for velocity) between-measurers and (<0.5 cm for position; <2.6 cm/s for velocity) within-measurer. Good (coefficients of variation (CV) ≤ 10%) to acceptable (CV > 10% and ≤20%) reliability was shown for 95% of the position measures, with mean CVs of 10% and 11% within-measurers and between-measures, respectively. Velocity measures were less reliable; 40% of the measures showed good to marginal (CV > 20% and ≤30%) reliability. This study established that leg soft tissue position data from skin markers could be obtained with good to acceptable reliability following heel impacts. Velocity data were less reliable but still acceptable in many cases.  相似文献   

9.
Abstract

Thirty-eight competitive cross-country skiers were divided into three groups to assess the reliability and validity of a new double poling ergometer. Group A (n = 22) performed two maximal 60-s tests, Group B (n = 8) repeated peak oxygen uptake tests on the double poling ergometer, and Group C (n = 8) performed a maximal 6-min test on the double poling ergometer and a double poling time-trial on snow. The correlation between the power calculated at the flywheel and the power applied at the base of the poles was r = 0.99 (P < 0.05). The power at the poles was 50 – 70% higher than that at the flywheel. There was a high test – retest reliability in the two 60-s power output tests (coefficient of variation = 3.0%) and no significant difference in peak oxygen uptake in the two 6-min all-out tests (coefficient of variation = 2.4%). There was a strong correlation between the absolute (W) and relative power (W · kg?1) output in the 6-min double poling ergometer test and the double poling performance on snow (r = 0.86 and 0.89 respectively; both P < 0.05). In conclusion, our results show that the double poling ergometer has both high reliability and validity. However, the power calculated at the flywheel underestimated the total power produced and needs to be corrected for in ergonomic estimations.  相似文献   

10.
Change of direction speed (CODS) underpins performance in a wide range of sports but little is known about how stiffness and asymmetries affect CODS. Eighteen healthy males performed unilateral drop jumps to determine vertical, ankle, knee and hip stiffness, and a CODS test to evaluate left and right leg cutting performance during which ground reaction force data were sampled. A step-wise regression analysis was performed to ascertain the determinants of CODS time. A two-variable regression model explained 63% (R2 = 0.63; P = 0.001) of CODS performance. The model included the mean vertical stiffness and jump height asymmetry determined during the drop jump. Faster athletes (n = 9) exhibited greater vertical stiffness (F = 12.40; P = 0.001) and less asymmetry in drop jump height (F = 6.02; P = 0.026) than slower athletes (n = 9); effect sizes were both “large” in magnitude. Results suggest that overall vertical stiffness and drop jump height asymmetry are the strongest predictors of CODS in a healthy, non-athletic population.  相似文献   

11.
Abstract

The aims of this study were to: (1) assess the reliability of various kinetic and temporal variables for unilateral vertical, horizontal, and lateral countermovement jumps; (2) determine whether there are differences in vertical ground reaction force production between the three types of jumps; (3) quantify the magnitude of asymmetry between limbs for variables that were established as reliable in a healthy population and whether asymmetries were consistent across jumps of different direction; and (4) establish the best kinetic predictor(s) of jump performance in the vertical, horizontal, and lateral planes of motion. Thirty team sport athletes performed three trials of the various countermovement jumps on both legs on two separate occasions. Eccentric and concentric peak force and concentric peak power were the only variables with acceptable reliability (coefficient of variation = 3.3–15.1%; intra-class correlation coefficient = 0.70–0.96). Eccentric and concentric peak vertical ground reaction force (14–16%) and concentric peak power (45–51%) were significantly (P < 0.01) greater in the vertical countermovement jump than in the horizontal countermovement jump and lateral countermovement jump, but no significant difference was found between the latter two jumps. No significant leg asymmetries (–2.1% to 9.3%) were found in any of the kinetic variables but significant differences were observed in jump height and distance. The best single predictors of vertical countermovement jump, horizontal countermovement jump, and lateral countermovement jump performance were concentric peak vertical power/body weight (79%), horizontal concentric peak power/body weight (42.6%), and eccentric peak vertical ground reaction force/body weight (14.9%) respectively. These findings are discussed in relation to monitoring and developing direction-specific jump performance.  相似文献   

12.
This study assessed the validity of a tri-axial accelerometer worn on the upper body to estimate peak forces during running and change-of-direction tasks. Seventeen participants completed four different running and change-of-direction tasks (0°, 45°, 90°, and 180°; five trials per condition). Peak crania-caudal and resultant acceleration was converted to force and compared against peak force plate ground reaction force (GRF) in two formats (raw and smoothed). The resultant smoothed (10 Hz) and crania-caudal raw (except 180°) accelerometer values were not significantly different to resultant and vertical GRF for all running and change-of-direction tasks, respectively. Resultant accelerometer measures showed no to strong significant correlations (r = 0.00–0.76) and moderate to large measurement errors (coefficient of variation [CV] = 11.7–23.9%). Crania-caudal accelerometer measures showed small to moderate correlations (r = ? 0.26 to 0.39) and moderate to large measurement errors (CV = 15.0–20.6%). Accelerometers, within integrated micro-technology tracking devices and worn on the upper body, can provide a relative measure of peak impact force experienced during running and two change-of-direction tasks (45° and 90°) provided that resultant smoothed values are used.  相似文献   

13.
Abstract

The purpose of this study was to establish if vertical stiffness was greater in professional Australian rules footballers who sustained a lower limb skeletal muscle strain compared to those who did not, and to establish if a relationship between age, or training history, and vertical stiffness existed. Thirty-one participants underwent weekly rebound jump testing on a force platform over two seasons. Vertical stiffness was calculated for injured players and the uninjured cohort 1 and 3 weeks prior to sustaining an injury and at the end of preseason. Eighteen athletes were in the “uninjured” cohort and 13 in the “injured” cohort. No significant difference in vertical stiffness was observed between groups (P = 0.18 for absolute stiffness; P = 0.08 for stiffness relative to body mass), within groups (P = 0.83 and P = 0.88, respectively) or for a time*cohort interaction (P = 0.77 and P = 0.80, respectively). No relationship between age and vertical stiffness existed (r = ?0.06 for absolute and relative stiffness), or training history and vertical stiffness (r = ?0.01 and 0.00 for absolute and relative stiffness, respectively) existed. These results and others lend to suggest that vertical stiffness is not related to lower limb muscle strain injury.  相似文献   

14.
Lower extremity injuries have immediate and long-term consequences. Lower extremity movement assessments can assist with identifying individuals at greater injury risk and guide injury prevention interventions. Movement assessments identify similar movement characteristics and evidence suggests large magnitude kinematic relationships exist between movement patterns observed across assessments; however, the magnitude of the relationships for electromyographic (EMG) measures across movement assessments remains largely unknown. This study examined relationships between lower extremity kinematic and EMG measures during jump landings and single leg squats. Lower extremity three-dimensional kinematic and EMG data were sampled from healthy adults (males = 20, females = 20) during the movement assessments. Pearson correlations examined the relationships of the kinematic and EMG measures and paired samples t-tests compared mean kinematic and EMG measures between the assessments. Overall, significant moderate correlations were observed for lower extremity kinematic (ravg = 0.41, rrange = 0.10–0.61) and EMG (ravg = 0.47, rrange = 0.32–0.80) measures across assessments. Kinematic and EMG measures were greater during the jump landings. Jump landings and single leg squats place different demands on the body and necessitate different kinematic and EMG patterns, such that these measures are not highly correlated between assessments. Clinicians should, therefore, use multiple assessments to identify aberrant movement and neuromuscular control patterns so that comprehensive interventions can be implemented.  相似文献   

15.
Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the relationship between finger flexor all-out test scores and climbing ability. Methods: To determine the effect of AF, 22 male climbers performed 2 maximal strength and all-out tests with AF (shoulder and elbow flexed at 90°) and without AF (shoulder flexed at 180° and elbow fully extended). To determine reliability, 9 male climbers completed 2 maximal strength tests with and without AF and an all-out and intermittent test without AF. Results: The maximal strength test without AF more strongly determined climbing ability than the test with AF (r2 = .48 and r2 = .42 for sport climbing; r2 = .66 and r2 = .42 for bouldering, respectively). Force and time variables were highly reliable; the rate of force development and fatigue index had moderate and low reliability. The maximal strength test with AF provided slightly higher reliability than without AF (intraclass correlation coefficient [ICC] = 0.94, ICC = 0.88, respectively). However, smaller maximal forces were achieved during AF (484 ± 112 N) than without AF (546 ± 132 N). All-out test average force had sufficiently high reliability (ICC = 0.92) and a relationship to sport climbing (r2 = .42) and bouldering ability (r2 = .58). Conclusion: Finger strength and endurance measurements provided sufficient construct validity evidence and high reliability for time and force parameters. Arm fixation provides more reliable results; however, the position without AF is recommended as it is more related to climbing ability.  相似文献   

16.
Abstract

This study investigated the association between explosive force production during isometric squats and athletic performance (sprint time and countermovement jump height). Sprint time (5 and 20 m) and jump height were recorded in 18 male elite-standard varsity rugby union players. Participants also completed a series of maximal- and explosive-isometric squats to measure maximal force and explosive force at 50-ms intervals up to 250 ms from force onset. Sprint performance was related to early phase (≤100 ms) explosive force normalised to maximal force (5 m, r = ?0.63, P = 0.005; and 20 m, r = ?0.54, P = 0.020), but jump height was related to later phase (>100 ms) absolute explosive force (0.51 < r < 0.61; 0.006 < P < 0.035). When participants were separated for 5-m sprint time (< or ≥ 1s), the faster group had greater normalised explosive force in the first 150 ms of explosive-isometric squats (33–67%; 0.001 < P < 0.017). The results suggest that explosive force production during isometric squats was associated with athletic performance. Specifically, sprint performance was most strongly related to the proportion of maximal force achieved in the initial phase of explosive-isometric squats, whilst jump height was most strongly related to absolute force in the later phase of the explosive-isometric squats.  相似文献   

17.
There is a need for reliable analysis techniques for kinetic data for coaches and sport scientists who employ athlete monitoring practices. The purpose of the study was: (1) to determine intra- and inter-rater reliability within a manual-based kinetic analysis program; and (2) to determine test-retest reliability of an algorithm-based kinetic analysis program. Five independent raters used a manual analysis program to analyse 100 isometric mid-thigh pull (IMTP) trials obtained from previously collected data. Each trial was analysed three times. The same IMTP trials were analysed using an algorithm-based analysis software. Variables measured were peak force, rate of force development from 0 to 50 ms (RFD50) and RFD from 0 to 200 ms (RFD200). Intraclass correlation coefficients (ICC) and coefficient of variation (CV) were used to assess intra- and inter-rater reliability. Nearly perfect reliability was observed for the manual-based (ICC > 0.92). However, poor intra- and inter-rater CV was observed for RFD (CV > 16.25% and CV > 32.27%, respectively). The algorithm-based method resulted in perfect reliability in all measurements (ICC = 1.0, CV = 0%). While manual methods of kinetic analysis may provide sufficient reliability, the perfect reliability observed within the algorithm-based method in the current study suggest it is a superior method for use in athlete monitoring programs.  相似文献   

18.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

19.
20.
ABSTRACT

This study examined the reliability and validity of three methods of estimating the one-repetition maximum (1RM) during the free-weight prone bench pull exercise. Twenty-six men (22 rowers and four weightlifters) performed an incremental loading test until reaching their 1RM, followed by a set of repetitions-to-failure. Eighteen participants were re-tested to conduct the reliability analysis. The 1RM was estimated through the lifts-to-failure equations proposed by Lombardi and O’Connor, general load-velocity (L-V) relationships proposed by Sánchez-Medina and Loturco and the individual L-V relationships modelled using four (multiple-point method) or only two loads (two-point method). The direct method provided the highest reliability (coefficient of variation [CV] = 2.45% and intraclass correlation coefficient [ICC] = 0.97), followed by the Lombardi’s equation (CV = 3.44% and ICC = 0.94), and no meaningful differences were observed between the remaining methods (CV range = 4.95–6.89% and ICC range = 0.81–0.91). The lifts-to-failure equations overestimated the 1RM (3.43–4.08%), the general L-V relationship proposed by Sánchez-Medina underestimated the 1RM (?3.77%), and no significant differences were observed for the remaining prediction methods (?0.40–0.86%). The individual L-V relationship could be recommended as the most accurate method for predicting the 1RM during the free-weight prone bench pull exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号