首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Abstract

The aim was to investigate performance variables and indicators of cardiovascular health profile in elderly soccer players (SP, n = 11) compared to endurance-trained (ET, n = 8), strength-trained (ST, n = 7) and untrained (UT, n = 7) age-matched men. The 33 men aged 65–85 years underwent a testing protocol including measurements of cycle performance, maximal oxygen uptake (VO2max) and body composition, and muscle fibre types and capillarisation were determined from m. vastus lateralis biopsy. In SP, time to exhaustion was longer (16.3 ± 2.0 min; P < 0.01) than in UT (+48%) and ST (+41%), but similar to ET (+1%). Fat percentage was lower (P < 0.05) in SP (–6.5% points) than UT but not ET and ST. Heart rate reserve was higher (P < 0.05) in SP (104 ± 16 bpm) than UT (+21 bpm) and ST (+24 bpm), but similar to ET (+2 bpm), whereas VO2max was not significantly different in SP (30.2 ± 4.9 ml O2 · min?1 · kg?1) compared to UT (+14%) and ST (+9%), but lower (P < 0.05) than ET (?22%). The number of capillaries per fibre was higher (P < 0.05) in SP than UT (53%) and ST (42%) but similar to ET. SP had less type IIx fibres than UT (?12% points). In conclusion, the exercise performance and cardiovascular health profile are markedly better for lifelong trained SP than for age-matched UT controls. Incremental exercise capacity and muscle aerobic capacity of SP are also superior to lifelong ST athletes and comparable to endurance athletes.  相似文献   

2.
The hypothesis that endurance training impairs sprinting ability was examined. Eight male subjects undertook a 30‐s sprint test on a cycle ergometer before and after 6 weeks of cycling training for endurance. Maximum oxygen uptake (VO2 max) and submaximum endurance were determined to evaluate the influence of the training regimen on endurance performance. Endurance was defined as the time to exhaustion at a relative exercise intensity of 85% VO2 max. Maximum oxygen uptake was increased by 18% post‐training (3.29 ± 0.291 min–1 versus 3.89±0.491 min–1; P <0.01), but endurance at the same absolute work rate as pre‐training was increased by more than 200% (32.2 ±11.4 min versus 97.8 + 27.3 min; P <0.01). These improvements were accompanied by changes in the cardiovascular and metabolic responses to standard, submaximum exercise. Despite the improvements in endurance, neither performance during the cycle sprint test nor the increase in blood lactate concentration during the sprint was influenced by endurance training. For short‐term cycling training, these findings reinforce the concept of training specificity whilst demonstrating that decrements in sprint performance are not a necessary consequence of improved endurance.  相似文献   

3.
Caffeine and coffee are widely used among active individuals to enhance performance. The purpose of the current study was to compare the effects of acute coffee (COF) and caffeine anhydrous (CAF) intake on strength and sprint performance. Fifty-four resistance-trained males completed strength testing, consisting of one-rep max (1RM) and repetitions to fatigue (RTF) at 80% of 1RM for leg press (LP) and bench press (BP). Participants then completed five, 10-second cycle ergometer sprints separated by one minute of rest. Peak power (PP) and total work (TW) were recorded for each sprint. At least 48 hours later, participants returned and ingested a beverage containing CAF (300?mg flat dose; yielding 3–5?mg/kg bodyweight), COF (8.9?g; 303?mg caffeine), or placebo (PLA; 3.8?g non-caloric flavouring) 30 minutes before testing. LP 1RM was improved more by COF than CAF (p?=?.04), but not PLA (p?=?.99). Significant interactions were not observed for BP 1RM, BP RTF, or LP RTF (p?>?.05). There were no sprint?×?treatment interactions for PP or TW (p?>?.05). 95% confidence intervals revealed a significant improvement in sprint 1 TW for CAF, but not COF or PLA. For PLA, significant reductions were observed in sprint 4 PP, sprint 2 TW, sprint 4 TW, and average TW; significant reductions were not observed with CAF or COF. Neither COF nor CAF improved strength outcomes more than PLA, while both groups attenuated sprint power reductions to a similar degree. Coffee and caffeine anhydrous may be considered suitable pre-exercise caffeine sources for high-intensity exercise.  相似文献   

4.
The present study examined the effect of strength and endurance training order on the endocrine milieu associated with strength development and performance during concurrent training. A randomised, between-groups design was employed with 30 recreationally resistance-trained males completing one of four acute experimental training protocols; strength training (ST), strength followed by endurance training (ST-END), endurance followed by strength training (END-ST) or no training (CON). Blood samples were taken before each respective exercise protocol, immediately upon cessation of exercise, and 1?h post cessation of exercise. Blood samples were subsequently analysed for total testosterone, cortisol and lactate concentrations. Ability to maintain 80% 1RM during strength training was better in ST and ST-END than END-ST (both p?<?.05). Immediately following the respective exercise protocols all training interventions elicited significant increases in testosterone (p?<?.05). ST and END-ST resulted in greater increases in cortisol than ST-END (both p?<?.05). The testosterone:cortisol ratio was similar following the respective exercise protocols. Blood lactate concentrations post-training were greater following END-ST and ST than ST-END (both p?<?.05). Conducting endurance exercise prior to strength training resulted in impaired strength training performance. Blood cortisol and lactate concentrations were greater when endurance training was conducted prior to strength training than vice versa. As such, it may be suggested that conducting endurance prior to strength training may result in acute unfavourable responses to strength training when strength training is conducted with high loads.  相似文献   

5.
Physical activity (PA) promotes health in obese youth and is an important adjunct to medical weight management. Access to structured fitness programmes for obese, low-income youth is limited and potential benefits of such programmes are poorly understood. We describe an urban afterschool fitness programme for obese youth and participants’ changes in fitness and body composition. A case series of 30 youth (age: 11.5 ± 2.5 years) with BMI ≥95th percentile and physician referral received a 24-wk programme scholarship. The programme, offered 4 times a week for 90-min.session, included aerobic, strength, and self-organised PA. Primary outcomes, measured at baseline (BL) time 1 (4–8 wk) and time 2 (12–16 wk) were BMI, per cent body fat (%BF), fat-free mass (FFM), heart rate during a treadmill test, and muscular strength (one repetition maximum (1RM)) and endurance (reps at 70% of 1RM) on the leg press (LP) and chest press (CP). Average participation was 1.5 ± 0.6 visits per week for 18.7 ± 6.5 weeks. Between BL and time 2, LP and CP 1RM and endurance significantly improved (P < 0.05). Additionally, there was a significant interaction for %BF with boys losing 5.2% (P > 0.05) while girls lost 0% (>0.05). Obese youth attending an urban fitness programme for at least three months improved strength and body composition, but average attendance was below planned levels.  相似文献   

6.
Abstract

Muscular and aerobic capacity changes resulting from three months of wrestling training were examined in a group of normally active 7- to 9-year-old boys (N = 23) who competed in an intramural league tournament. A nontraining group of twenty-two boys of similar age, height, and weight served as control subjects, and were studied during the same period of time. The subjects were measured for body dimensions and skinfolds, and were given measures of back lift, leg press, and arm endurance (dips and chins). They were also measured for [Vdot]E max, [Vdot]O 2 max, and HR max employing a progressive treadmill protocol. Results of ANCOVA analyses indicated that (1) the mean improvements in [Vdot]E max (2.93 1·min ?1 ) and in [Vdot]O 2 max (+ 6.6 ml·kg ?1 ·min ?1 ) were not significantly greater than control (p > .05), nor was HR max; (2) arm endurance improved significantly over control (p < .05), as did the leg press, but the back lift was not improved significantly (p > .05); (3) no significant change occurred in height, weight, or in some of skinfolds (p > .05), but the wrestlers were less endomorphic and more ectomorphic than their control counterparts, and were judged essentially equivalent in mesomorphy. It is concluded that wrestling training in young boys improves strength, but does not improve aerobic capacity more than one would expect to see in normal children of similar age and size.  相似文献   

7.
Abstract

Poor muscle strength and physical function have been associated with higher risk of hospitalisation and lower well-being among the elderly. Physical training increases muscle strength, endurance and physical function as well as psychological outcomes. Exercise among older adults is often used to improve these variables, but few have compared the effects of different types of training in parallel independent groups. Thus, the aim of the present study was to investigate the effect of three different types of training on body composition, muscle strength, physical function and well-being in the elderly. A total of 118 community-dwelling older adults (mean age 74.3, s=4.6 years, 68% women) completed a 13-week randomised controlled exercise-trial involving four groups: traditional strength training (STG), functional strength training (FTG), endurance training (ETG) and control (CON). Stair climb with load improved more in FTG than CON (P<0.05), and the two strength groups performed better in the functional upper body test (P<0.05). STG increased strength more than CON in all exercises (P<0.001), while FTG increased strength more than CON in the chest press, shoulder press and knee extension (P<0.05). Lean body mass (LBM) increased in all training groups, which differed significantly from CON (P<0.05). ETG decreased their fat mass compared to CON (P<0.001). The only significant effect on well-being indices was improved life satisfaction in FTG at week 5 (P<0.05). We also observed significant correlations between change in some of the functional tests and change in positive affect.

All three types of training can enhance physical capacity. Functional strength training can be a cost effective form of training in terms of less demand for instructors and equipment and could be an effective way to improve physical function, strength and indices of well-being in the elderly.  相似文献   

8.
Abstract

Six games players (GP) and six endurance‐trained runners (ET) completed a standardized multiple sprint test on a non‐motorized treadmill consisting often 6‐s all‐out sprints with 30‐s recovery periods. Running speed, power output and oxygen uptake were determined during the test and blood samples were taken for the determination of blood lactate and pH. Games players tended to produce a higher peak power output (GP vs ET: 839 ± 114 vs 777 ± 89 W, N.S.) and higher peak speed (GP vs ET: 7.03 ± 0.3 vs 6.71 ± 0.3 m s‐1, N.S.), but had a greater decrement in mean power output than endurance‐trained runners (GP vs ET: 29.3 ± 8.1% vs 14.2 ± 11.1%, P < 0.05). Blood lactate after the test was higher for the games players (GP vs ET: 15.2 ± 1.9 vs 12.4 ± 1.7 mM, P < 0.05), but the decrease in pH was similar for both groups (GP vs ET: 0.31 ± 0.08 vs 0.28 ± 0.08, N.S.). Strong correlations were found between peak blood lactate and peak speed (r = 0.90, P < 0.01) and between peak blood lactate and peak power fatigue (r = 0.92, P<0.01). The average increase in oxygen uptake above pre‐exercise levels during the sprint test was greater for endurance‐trained athletes than for the games players (ET vs GP: 35.0 ± 2.2 vs 29.6 ± 3.0 ml kg‐1 min‐1 , P < 0.05), corresponding to an average oxygen uptake per sprint (6‐s sprint and 24 s of subsequent recovery) of 67.5 ± 2.9% and 63.0 ± 4.5% VO 2 max respectively (N.S.). A modest relationship existed between the average increase in oxygen uptake above pre‐exercise values during the sprint test and mean speed fatigue (r = ‐0.68, P < 0.05). Thus, the greater decrement in performance for the games players may be related to higher glycolytic rates as reflected by higher lactate concentrations and to their lower oxygen uptake during the course of the 10 sprints.  相似文献   

9.
ABSTRACT

This study aimed to compare the reliability and magnitude of velocity variables between 3 variants of the bench press (BP) exercise in participants with and without BP training experience. Thirty males, 15 with and 15 without BP experience, randomly performed 3 variants of the BP on separate sessions: (I) concentric-only, (II) fast-eccentric and (III) controlled-eccentric. The mean velocity (MV) and maximum velocity (Vmax) of the concentric phase were collected against 3 loads (≈30%1RM, 50%1RM, and 75%1RM) with a linear velocity transducer. Reliability was high regardless of the variable, BP variant, and load (coefficient of variation [CV] ≤ 4.47%, intraclass correlation coefficient [ICC] ≥ 0.87). The comparison of the CVs suggested a higher reliability for the fast-eccentric BP (8 out of 12 comparisons), followed by the concentric-only BP (5 out of 12 comparisons), and finally the controlled-eccentric BP (never provided a higher reliability). No differences in reliability were observed between experienced (CV ≤ 4.71%; ICC ≥ 0.79) and non-experienced (CV ≤ 6.29%; ICC ≥ 0.76) participants. The fast-eccentric BP provided the highest MV (p < 0.05) and no differences were observed for Vmax. These results support the assessment of movement velocity during the fast-eccentric BP even in participants without experience.  相似文献   

10.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

11.
We have previously shown that single‐leg training results in improved endurance for exercise with the untrained leg (UTL) as well as for exercise with the trained leg (TL). The purpose of this study was to see whether the improved endurance of the untrained leg could be explained on the basis of changes in muscle metabolism. Exercise time to exhaustion at 80% of maximum oxygen uptake (VO2 max) was determined for each leg separately, pre‐ and post‐training. Muscle metabolite concentrations were measured pre‐ and post‐training in biopsy samples obtained immediately before this endurance test and at the pre‐training point of exhaustion (END1). After six weeks of single‐leg training endurance time was increased for both the UTL and the TL (UTL 34.0+16.4 min vs 97.9±26.3 min, P<0.01; TL 28.3 + 10.1 min vs 169.0 + 32.6 min, P < 0.01). No changes in muscle metabolite concentrations were found in resting muscle. Training increased muscle ATP (P <0.05) and glycogen (P <0.01) concentrations and decreased muscle lactate concentration (P<0.05) in the TL at END1. No significant changes in muscle metabolite concentrations were found for the UTL. The improved endurance of the contralateral limb after single‐leg training could not be explained on the basis of changes in muscle metabolism.  相似文献   

12.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

13.
The influences of growth, training and various training methods were investigated by analysing long‐term training effects in young cross‐country and biathlon skiers (n = 129). Some athletes (n = 49) were studied six times in three years and some at least once a year during a four year period (n = 48). During three summer training periods skiers emphasized either intensive training or distance training or continued to train normally. The results indicated that maximal oxygen uptake (VO2 max) and heart volume increased between 15 and 20 years of age and the most significant changes in heart volume were observed between 16 and 18 years of age. International level skiers were able to increase their VO2 max and heart volume even after 20 years of age. Anaerobic threshold (AT, ml kg‐1 min‐1) increased like VO2 max but when expressed as a percentage of VO2 max, the AT was similar in every age group over 16 years of age. Intensive training at the intensity of anaerobic threshold or higher was observed to be most effective in producing improvements in VO2 max. Low‐intensity distance training was more effective in producing improvements in anaerobic threshold.  相似文献   

14.
Abstract

The purpose of this study was to determine the effects of a Nautilus circuit weight training program on muscular strength and maximal oxygen uptake ([Vdot]O 2 max) by comparing these effects to those produced by adhering to either a free weight (FW) strength training program or a running (R) program. Male college students who voluntarily enrolled in either a FW training class (n = 11), a Nautilus (N) circuit weight training class (n= 12), or a R conditioning class (n= 13) were subjects for this investigation. All groups participated in their respective programs 3 days per week for 10 weeks. Strength was assessed using a Cybex II isokinetic dynamometer set at an angular velocity of 60° · s ?1 and a damping of 2. The FW group served as the control group for the assessment of [Vdot]O 2 max changes, while the R group served as controls for the assessment of strength differences. ANCOVA revealed that the N and R groups experienced significant (p < .01) increases in [Vdot]O 2 max expressed in L · min ?1 (10.9 and 11.4%), ml · kg ?1 · min ?1 (10.8 and 11.7%), and ml · kgLBW ?1 · min ?1 (7.1 and 7.5%) when compared to the FW group. There were no significant differences between the N and R groups. There were no significant differences among groups in final peak torque values (after covariance), and torque at the beginning and end of the range of motion for the knee extensors, knee flexors, elbow extensors, and elbow flexors. In general, isokinetic strength values elicited by the N group compared favorably to those generated by the FW group. It was concluded that for a training period of short duration, Nautilus circuit weight training appears to be an equally effective alternative to standard free weight (strength) and aerobic (endurance) training programs for untrained individuals.  相似文献   

15.

The dependence of power on aerobic and anaerobic energy metabolism and on force production was studied in maximal leg exercise. National and international level male rowers (n = 9) performed four modified (legs‐only) rowing ergometer exercises: a progressive test, 2‐min (T2), 12‐min (T12) and 6‐min (T6) all‐out tests. In T2, significant correlations were observed between power in T2 (PT2) and oxygen debt (r = 0.83, P<0.05) and between PT2 and average force production (Fav) during the last 30 s (r = 0.85, P<0.05). These parameters explained 93% of the variation in PT2. The highest correlations between power in T6 (PT6) and physiological parameters were as follows: maximal oxygen uptake (VO2 max: r = 0.87, P<0.01), blood bicarbonate concentration before the test ([HCO 3before]: r=0.85, P<0.05) and blood lactate concentration on anaerobic threshold (BLanT: r= —0.82, P<0.05). Together, these parameters explained 92% of the variation in PT6. In T12, the total power (PT12) correlated with power of anaerobic threshold #OPPANT’. r = 0.95, P< 0.001) and with the highest VO2 value in this test (VO2 peak: r = 0.92, P<0.001). These two parameters explained 96% of the variation in PT12.

The decrease of at least one of the force parameters during each test was taken as a sign of fatigue. The decline in force was compensated for by an increase in stroke rate at the end of T6 and T12 (P<0.01, P<0.001). Consequently, the power remained unchanged or even increased at the end of T6 and T12. The term ‘power endurance’ is introduced to describe the ability to resist and to compensate for local muscular fatigue.  相似文献   

16.
The goal of this randomized, double-blind, cross-over study was to assess the acute effects of caffeine ingestion on muscular strength and power, muscular endurance, rate of perceived exertion (RPE), and pain perception (PP) in resistance-trained men. Seventeen volunteers (mean?±?SD: age?=?26?±?6 years, stature?=?182?±?9?cm, body mass?=?84?±?9?kg, resistance training experience?=?7?±?3 years) consumed placebo or 6?mg?kg?1 of anhydrous caffeine 1?h before testing. Muscular power was assessed with seated medicine ball throw and vertical jump exercises, muscular strength with one-repetition maximum (1RM) barbell back squat and bench press exercises, and muscular endurance with repetitions of back squat and bench press exercises (load corresponding to 60% of 1RM) to momentary muscular failure. RPE and PP were assessed immediately after the completion of the back squat and bench press exercises. Compared to placebo, caffeine intake enhanced 1RM back squat performance (+2.8%; effect size [ES]?=?0.19; p?=?.016), which was accompanied by a reduced RPE (+7%; ES?=?0.53; p?=?.037), and seated medicine ball throw performance (+4.3%, ES?=?0.32; p?=?.009). Improvements in 1RM bench press were not noted although there were significant (p?=?.029) decreases in PP related to this exercise when participants ingested caffeine. The results point to an acute benefit of caffeine intake in enhancing lower-body strength, likely due to a decrease in RPE; upper-, but not lower-body power; and no effects on muscular endurance, in resistance-trained men. Individuals competing in events in which strength and power are important performance-related factors may consider taking 6?mg?kg?1 of caffeine pre-training/competition for performance enhancement.  相似文献   

17.
ABSTRACT

The purpose of this systematic review with meta-analysis was to examine the effects of strength training (ST) on selected components of physical fitness (e.g., lower/upper limb maximal strength, muscular endurance, jump performance, cardiorespiratory endurance) and sport-specific performance in rowers. Only studies with an active control group were included if they examined the effects of ST on at least one proxy of physical fitness and/or sport-specific performance in rowers. Weighted and averaged standardized mean differences (SMD) were calculated using random-effects models. Subgroup analyses were computed to identify effects of ST type or expertise level on sport-specific performance. Our analyses revealed significant small effects of ST on lower limb maximal strength (SMD = 0.42, p = 0.05) and on sport-specific performance (SMD = 0.32, p = 0.05). Non-significant effects were found for upper limb maximal strength, upper/lower limb muscular endurance, jump performance, and cardiorespiratory endurance. Subgroup analyses for ST type and expertise level showed non-significant differences between the respective subgroups of rowers (p ≥ 0.32). Our systematic review with meta-analysis indicated that ST is an effective means for improving lower limb maximal strength and sport-specific performance in rowers. However, ST-induced effects are neither modulated by ST type nor rowers’ expertise level.  相似文献   

18.
Abstract

The purpose of this study was to evaluate the effects of moderate- to high-intensity resistance and concurrent training on inflammatory biomarkers and functional capacity in sedentary middle-aged healthy men. Participants were selected on a random basis for resistance training (n = 12), concurrent training (n = 11) and a control group (n = 13). They performed three weekly sessions for 16 weeks (resistance training: 10 exercises with 3 × 8–10 repetition maximum; concurrent training: 6 exercises with 3 × 8–10 repetition maximum, followed by 30 minutes of walking or running at 55–85% [Vdot]O2peak). Maximal strength was tested in bench press and leg press. The peak oxygen uptake ([Vdot]O2peak) was measured by an incremental exercise test. Tumour necrosis factor-α, interleukin-6 and C-reactive protein were determined. The upper- and lower-body maximal strength increase for both resistance (+42.52%; +20.9%, respectively) and concurrent training (+28.35%; +21.5%, respectively) groups (P = 0.0001).[Vdot]O2peak increased in concurrent training when comparing pre- and post-training (P = 0.0001; +15.6%). No differences were found in tumour necrosis factor-α and interleukin-6 for both groups after the exercise. C-reactive protein increased in resistance training (P = 0.004). These findings demonstrated that 16 weeks of moderate- to high-intensity training could improve functional capacity, but did not decrease inflammatory biomarkers in middle-aged men.  相似文献   

19.
The effects of strength training of the quadriceps on peak power output during isokinetic cycling has been investigated in a group of 17 young healthy volunteers. Subjects trained by lifting near‐maximal loads on a leg extension machine for 12 weeks. Measurements of maximal voluntary isometric force were made at 2–3 week intervals and a continual record was kept of the weights lifted in training. Peak power output was measured at 110 rev min–1 and at either 70 or 80 rev min–1 before and after the 12 week training period. Measurements of maximum oxygen uptake (VO2max) were made on 12 subjects before and after training. The greatest change was in the weights lifted in training which increased by 160–200%. This was accompanied by a much smaller increase in maximum isometric force (3–20%). There was no significant change in peak power output at either speed. The VO2max remained unchanged with training. The role of task specificity in training is discussed in relation to training regimes for power athletes and for rehabilitation of patients with muscle weakness.  相似文献   

20.
The purpose of this study was to test the hypothesis that increased availability of blood‐borne glucose would improve endurance after carbohydrate loading. A single‐leg exercise model was employed, taking advantage of the fact that supercompensation of muscle glycogen occurs only in a previously exercised limb. Endurance time to exhaustion at 70% of maximal oxygen uptake (VO2max) was determined for 11 males and three females who were then allocated to a control group or a high‐carbohydrate (CHO) group. For 3 days following Test 1 the control group maintained a prescribed normal diet whilst the CHO group increased the proportion of energy derived from carbohydrate (62.1 ± 4.3% cf. 43.9 ± 2.0%, P < 0.01). The endurance test was then repeated using the leg that was inactive during Test 1. Endurance time was increased on Test 2 (123.7 ± 43.2 min cf. 98.5 ± 21.9 min, P <0.05 one‐tailed test) for the CHO group but not for the control group (101.8 ± 21.7 min cf. 107.5 ± 9.1 min, NS). There was no indication of enhanced carbohydrate metabolism during Test 2 for the CHO group but mean heart rate was lower during Test 2 than during Test 1 (145 ± 14 beat min ‐1 cf. 152 ± 12 beat min ‐1, P<0.05). These results suggest that the prior consumption of a high‐carbohydrate diet improves endurance during high‐intensity cycling with a limb with normal muscle glycogen concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号