首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dealing with representations is a crucial skill for students and such representational competence is essential for learning science. This study analysed the relationship between representational competence and content knowledge, student perceptions of teaching practices concerning the use of different representations, and their impact on students' outcome over a teaching unit. Participants were 931 students in 51 secondary school classes. Representational competence and content knowledge were interactively related. Representational aspects were only moderately included in teaching and students did not develop rich representational competence although content knowledge increased significantly. Multilevel regression showed that student perceptions of interpreting and constructing visual-graphical representations and active social construction of knowledge predicted students' outcome at class level, whereas the individually perceived amount of terms and use of symbolic representations influenced the students' achievement at individual level. Methodological and practical implications of these findings are discussed in relation to the development of representational competence in classrooms.  相似文献   

2.
ABSTRACT

The current study reports outcomes of a professional development model intended to strengthen faculty members’ cultural competence and skills for teaching about diversity and inclusion. Creating Inclusive Communities (CIC) was developed collaboratively by faculty from across social science disciplines based on a theoretical framework emphasizing learning principles, critical consciousness, and White racial identity development. This study examined the outcomes of the model on student cultural competence based on pre-post survey analysis. Findings indicate that students perceived a benefit from course activities related to race pedagogy and showed statistically significant results in two of three courses. These findings indicate that the infusion of an inclusive model, including in courses not directly related to diversity topics, has potential benefits to students. Additionally, the impact is strengthened through a more integrated approach over the course of the semester.  相似文献   

3.
An effective inquiry-oriented science teacher possesses more than the skills of teaching through investigation. They must address philosophies, and ways of interacting as a member of a group of educators who value and practice science through inquiry. Professional development opportunities can support inquiry identity development, but most often they address teaching practices from limited cognitive perspectives, leaving unexplored the shifts in identity that may accompany teachers along their journey in becoming skilled in inquiry-oriented instruction. In this forum article, we envision Victoria Deneroff’s argument that “professional development could be designed to facilitate reflexive transformation of identity within professional learning environments” (2013, p. 33). Instructional coaching, cogenerative dialogues, and online professional communities are discussed as ways to promote inquiry identity formation and collaboration in ways that empower and deepen science teachers’ conversations related to personal and professional efficacy in the service of improved science teaching and learning.  相似文献   

4.
Multiple external representations (MERs) are central to the practice and learning of science, mathematics and engineering, as the phenomena and entities investigated and controlled in these domains are often not available for perception and action. MERs therefore play a twofold constitutive role in reasoning in these domains. Firstly, MERs stand in for the phenomena and entities that are imagined, and thus make possible scientific investigations. Secondly, related to the above, sensorimotor and imagination-based interactions with the MERs make possible focused cognitive operations involving these phenomena and entities, such as mental rotation and analogical transformations. These two constitutive roles suggest that acquiring expertise in science, mathematics and engineering requires developing the ability to transform and integrate the MERs in that field, in tandem with running operations in imagination on the phenomena and entities the MERs stand for. This core ability to integrate external and internal representations and operations on them – termed representational competence (RC) – is therefore critical to learning in science, mathematics and engineering. However, no general account of this core process is currently available. We argue that, given the above two constitutive roles played by MERs, a theoretical account of representational competence requires an explicit model of how the cognitive system interacts with external representations, and how imagination abilities develop through this process. At the applied level, this account is required to develop design guidelines for new media interventions for learning science and mathematics, particularly emerging ones that are based on embodied interactions. As a first step to developing such a theoretical account, we review the literature on learning with MERs, as well as acquiring RC, in chemistry, biology, physics, mathematics and engineering, from two perspectives. First, we focus on the important theoretical accounts and related empirical studies, and examine what is common about them. Second, we summarise the major trends in each discipline, and then bring together these trends. The results show that most models and empirical studies of RC are framed within the classical information processing approach, and do not take a constitutive view of external representations. To develop an account compatible with the constitutive view of external representations, we outline an interaction-based theoretical account of RC, extending recent advances in distributed and embodied cognition.  相似文献   

5.
The present article discusses the design and impact of computer‐based visualization tools for supporting student learning and representational competence in science. Specifically, learning outcomes and student representation use are compared between eight secondary classrooms utilizing The Connected Chemistry Curriculum and eight secondary chemistry using lecture‐based methods. Results from the quasi‐experimental intervention indicate that the curriculum and accompanying visualization tool yield only small to modest gains in student achievement on summative assessments. Analysis of student representation use on pre‐ and post‐assessments, however, indicate the students in Connected Chemistry classrooms are significantly more likely to use submicroscopic representations of chemical systems that are consistent with teacher and expert representation use. The affordances of visualization tools in inquiry activities to improve students' representational competence and conceptual understanding of content in the science classroom are discussed. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 1137–1158, 2011  相似文献   

6.
7.
The move from learning science from representations to learning science with representations has many potential and undocumented complexities. This thematic analysis partially explores the trends of representational uses in science instruction, examining 80 research studies on diagram use in science. These studies, published during 2000–2014, were located through searches of journal databases and books. Open coding of the studies identified 13 themes, 6 of which were identified in at least 10% of the studies: eliciting mental models, classroom-based research, multimedia principles, teaching and learning strategies, representational competence, and student agency. A shift in emphasis on learning with rather than learning from representations was evident across the three 5-year intervals considered, mirroring a pedagogical shift from science instruction as transmission of information to constructivist approaches in which learners actively negotiate understanding and construct knowledge. The themes and topics in recent research highlight areas of active interest and reveal gaps that may prove fruitful for further research, including classroom-based studies, the role of prior knowledge, and the use of eye-tracking. The results of the research included in this thematic review of the 2000–2014 literature suggest that both interpreting and constructing representations can lead to better understanding of science concepts.  相似文献   

8.
Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) sense making of connections by verbally explaining how different representations map to one another, and (2) perceptual fluency that allows students to fast and effortlessly use perceptual features to make connections among representations. Because these different competencies are acquired via different types of learning processes, they require different types of instructional support: sense-making activities and fluency-building activities. In a prior experiment, we showed benefits for combining sense-making activities and fluency-building activities. In the current work, we test how to combine these two forms of instructional support, specifically, whether students should first work on sense-making activities or on fluency-building activities. This comparison allows us to investigate whether sense-making competencies enhance students’ acquisition of perceptual fluency (sense-making-first hypothesis) or whether perceptual fluency enhances students’ acquisition of sense-making competencies (fluency-first hypothesis). We conducted a lab experiment with 74 students from grades 3–5 working with an intelligent tutoring system for fractions. We assessed learning processes and learning outcomes related to representational competencies and domain knowledge. Overall, our results support the sense-making-first hypothesis, but not the fluency-first hypothesis.  相似文献   

9.
10.
11.
In this paper we report the results of a study which investigated the affordances of multi-user virtual environments (MUVEs) for collaborative learning from a design perspective. Utilizing a mixed methods approach, we conducted a comparative study of the effect of varying representational and interactional design features on a collaborative design activity in three online synchronous environments. We compared environments featuring multiple modes of interaction (MUVEs), shared representations (text chat and 2D still images) and text-only features. Sixty-one students enrolled in an undergraduate course on Child Development participated in the study. Participants were asked to design a theoretically-based, developmentally appropriate, preschool classroom setting. Students were randomly assigned to one of three online learning environments that provided varying levels of representation and interaction. Significant differences in collaborative problem solving interactions were found. Participants in the shared representations + text condition evidenced stronger learning outcomes as regards substantive discussion and integration of child development concepts; while participants in the MUVE condition reported the most enjoyment with the experience. These findings are explained by the concepts of representational guidance, representational bias, educational affordances and interface design metaphors. Suggestions for the design of MUVEs for collaborative learning are provided.  相似文献   

12.
There has been extensive research on children’s understanding of evaporation, but representational issues entailed in this understanding have not been investigated in depth. This study explored three students’ engagement with science concepts relating to evaporation through various representational modes, such as diagrams, verbal accounts, gestures, and captioned drawings. This engagement entailed students (a) clarifying their thinking through exploring representational resources; (b) developing understanding of what these representations signify; and (c) learning how to construct representational aspects of scientific explanation. The study involved a sequence of classroom lessons on evaporation and structured interviews with nine children, and found that a focus on representational challenges provided fresh insights into the conceptual task involved in learning science. The findings suggest that teacher‐mediated negotiation of representational issues as students construct different modal accounts can support enriched learning by enabling both (a) richer conceptual understanding by students; and (b) enhanced teacher insights into students’ thinking.  相似文献   

13.
Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to effectively process the rich information encountered in virtual space. In this study, we investigated the effect of communication modality on cognitive load and science inquiry learning in students completing a science inquiry curriculum in an educational MUVE. Seventy-eight undergraduate education majors from a large southwestern university participated in this control-treatment study. Significant positive results were found for reducing cognitive load for participants communicating through voice-based chat, although this reduction was not found to influence learning outcomes. We conclude that use of voice-based communication can successfully reduce cognitive load in MUVE-based inquiry curricula.  相似文献   

14.
This quantitative case study used a pre- and posttest design for exploring the gender differences in secondary school students’ (n?=?131, 45 males and 86 females) learning of the force concept when an interactive engagement type of teaching was used. In addition, students’ ability to interpret multiple representations (i.e., representational consistency) was documented by a pre- and posttest and scientific reasoning ability by a pretest only. Males significantly outperformed females in learning of the force concept, pre- and posttest representational consistency, and pretest scientific reasoning. However, the gender difference in learning of the force concept was not significant when ANCOVA was conducted using pretest results of representational consistency and scientific reasoning as covariates. This appeared to indicate that the gender difference in learning gain was related to students’ abilities before the instruction. Thus, the teaching method used was equally effective for both genders. Further, our quantitative finding about the relation between representational consistency and learning of the force concept supports the assumption that multiple representations are important in science learning.  相似文献   

15.
《Exceptionality》2013,21(1):35-44
Curricula for students with autism do not take into account levels of learning such as behavioral fluency. Behavioral fluency addresses accuracy as well as speed of response. We posit that fluency increases the functionality of skills for students with autism and should be systematically programmed into a curriculum. To discuss the application of fluency for students with autism, we present background related to response competence, critical learning outcomes associated with behavioral fluency, and how fluency fits into a hierarchy of learning. We apply the concept of behavioral fluency to individuals with autism and suggest that research continue.  相似文献   

16.
Because of the multimodal nature of learning, doing and reporting science, it is important that students learn how to interpret, construct, relate and translate scientific representations or, in other words, to develop representational competence. Explicit instruction about multimodal representations is needed to foster students’ representational competence in the classroom. However, only a handful studies have surveyed how representations are actually used in science classes. This might be because of the fact that economical instruments for assessing the use of representations in classrooms are not available. To bridge that gap, an instrument was developed, field-tested in biology classes with 175 and 931 students, respectively, and analysed using exploratory and (multilevel) confirmatory factor analyses. Results supported an instrument with six scales and 21 items at the individual and classroom levels covering the following dimensions: (1) interpretation of visual representations, (2) construction of visual representations, (3) use of scientific texts (verbal representations), (4) use of symbolic representations, (5) number of terms used in class, and (6) the extent to which active social construction of knowledge is possible in the class. The scales showed satisfactory discriminant validity and reliability at each level. Further applications of this instrument for researchers and teachers are discussed.  相似文献   

17.
ABSTRACT

The emerging paradigm of responsible research and innovation (RRI) in the European Commission policy discourse identifies science education as a key agenda for better equipping students with skills and knowledge to tackle complex societal challenges and foster active citizenship in democratic societies. The operationalisation of this broad approach in science education demands, however, the identification of assessment frameworks able to grasp the complexity of RRI process requirements and learning outcomes within science education practice. This article aims to shed light over the application of the RRI approach in science education by proposing a RRI-based analytical framework for science education assessment. We use such framework to review a sample of empirical studies of science education assessments and critically analyse it under the lenses of RRI criteria. As a result, we identify a set of 86 key RRI assessment indicators in science education related to RRI values, transversal competences and experiential and cognitive aspects of learning. We argue that looking at science education through the lenses of RRI can potentially contribute to the integration of metacognitive skills, emotional aspects and procedural dimensions within impact assessments so as to address the complexity of learning.  相似文献   

18.
The growing interest for measurement of learning outcomes relates to long lines of development in higher education, the request for accountability, intensified through international reforms and movements such as the development and implementation of qualifications frameworks. In this article, we discuss relevant literature on different approaches to measurement and how learning outcomes are measured, what kinds of learning outcomes are measured, and why learning outcomes are measured. Three dimensions are used to structure the literature: Whether the approaches emphasise generic or disciplinary skills and competence, self‐assessment or more objective test based measures (including grades), and how the issue of the contribution from the education program or institution (the value‐added) are discussed. It is pointed out that large scales initiatives that compare institutions and even nations seem to fall short because of the implicit and explicit differences in context, whilst small‐scale approaches suffer from a lack of relevance outside local contexts. In addition, competence (actual level of performance) is often confused with learning (gain and development) in many approaches, laying the ground for false assumptions about institutional process‐quality in higher education.  相似文献   

19.
The aim of this explorative study was to find the factors limiting sixth-grade learners’ outcomes in acquiring skills related to the transformative inquiry learning processes as well as to analyse the interrelations between inquiry skills in order to develop an optimal support system for designing Web-based inquiry learning environments. A Web-based learning environment ‘Young Scientist’ was developed and applied to the domain of integrated science. The skill of identifying the correct research questions appeared to be a prerequisite for formulating research questions. When students understand how to identify the research questions correctly, there is no need for supporting formulation of research questions or hypotheses. We have found that at the stages of analysing data and inferring, students have to be provided with the tools to activate their prior knowledge, assignments help to organize their work into manageable sections, and reflective support or adaptive feedback to relate the results achieved with the process of inquiry. Our findings demonstrate that the effectiveness of inquiry learning can be strongly influenced by regulative support; however, a particular level of initial inquiry knowledge in theoretical context is also needed in order to develop inquiry skills in a situational context.  相似文献   

20.
ABSTRACT

The arts animate learning because they are inherently experiential and because of their potential to develop creative and critical thinking skills in students. These same skills are valued in science, technology, engineering, and math (STEM) education, but the arts have not been consistently included in STEM lessons. We transformed our STEM programming into STEAM programming (STEM plus arts) by creating an innovative partnership between two informal learning environments, the Braithwaite Fine Arts Gallery and the Garth and Jerri Frehner Museum of Natural History at Southern Utah University. The partnership resulted in a STEAM learning program that integrated art and science for K-12 students. We incorporated an art exhibition, a hands-on lesson in art, and an immersive lesson in science that culminated in a student project that merged concepts from both art and science. Through programs each fall from 2012 through 2014, we helped over 6,000 students from southern Utah use concepts from art to deepen their understanding of caterpillar defenses, fish ecomorphology, and pollinator biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号