首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the exponential stability of a class of delayed neural networks described by nonlinear delay differential equations of the neutral type has been studied. By constructing appropriate Lyapunov functional and using the linear matrix inequality (LMI) optimization approach, a series of sufficient criteria is obtained ensuring the existence, uniqueness and global exponential stability of an equilibrium point of such a kind of delayed neural networks. These conditions are dependent on the size of the time delay and the measure of the space, which is usually less conservative than delay-independent and space-independent ones. And, these networks are generalized without assuming the boundedness and differentiability of the activate functions. The proposed LMI condition can be checked easily by recently developed algorithms. The results are new and improve the earlier work. Examples are provided to demonstrate the effectiveness and applicability of the proposed criteria.  相似文献   

2.
This paper is concerned with a class of neutral delay BAM neural networks with time-varying delays in leakage terms. Some sufficient conditions are established to ensure the existence and exponential stability for such class of neural networks by employing the exponential dichotomy of linear differential equations, fixed point theorems and differential inequality techniques. An example is provided to show the effectiveness of the theoretical results. The results of this paper are completely new and complementary to the previously known results.  相似文献   

3.
In this paper, the global robust exponential stability problem for a class of uncertain inertial-type BAM neural networks with both time-varying delays is focused through Lagrange sense. The existence of time-varying delays in discrete and distributed terms is explored with the availability of lower and upper bounds of time-varying delays. Firstly, we transform the proposed inertial BAM neural networks to usual one. Secondly, by the aid of LKF, stability theory, integral inequality, some novel sufficient conditions for the global robust exponential stability of the addressed neural networks are obtained in terms of linear matrix inequalities, which can be easily tested in practice by utilizing LMI control toolbox in MATLAB software. Furthermore, many comparisons of proposed work are listed with some existing literatures to get less conservatism. Finally, two numerical examples are provided to demonstrate the advantages and superiority of our theoretical outcomes.  相似文献   

4.
In this paper, we investigate first the existence and uniqueness of periodic solution in a general Cohen–Grossberg BAM neural networks with delays on time scales by means of contraction mapping principle. Then by using the existence result of periodic solution and constructing a Lyapunov functional, we discuss the global exponential stability of periodic solution for above neural networks. In the last section, we also give examples to demonstrate the validity of our global exponential stability result of the periodic solution for above neural networks.  相似文献   

5.
In this paper, by using Lyapunov functions, Razumikhin techniques and stochastic analysis approaches, the robust exponential stability of a class of uncertain impulsive stochastic neural networks with delayed impulses is investigated. The obtained results show that delayed impulses can make contribution to the stability of system. Compared with existing results on related problems, this work improves and complements ones from some works. Two examples are discussed to illustrate the effectiveness and the advantages of the results obtained.  相似文献   

6.
In this paper, an auxiliary model-based nonsingular M-matrix approach is used to establish the global exponential stability of the zero equilibrium, for a class of discrete-time high-order Cohen–Grossberg neural networks (HOCGNNs) with time-varying delays, connection weights and impulses. A new impulse-free discrete-time HOCGNN with time-varying delays and connection weights is firstly constructed, and the relationship between the solutions of original systems and new HOCGNNs is indicated by a technical lemma. From which, the global exponential stability criteria for the zero equilibrium are derived by using an inductive idea and the properties of nonsingular M-matrices. The effectiveness of the obtained stability criteria is illustrated by numerical examples. Compared with the previous results, this paper has three advantages: (i) The Lyapunov–Krasovskii functional is not required; (ii) The obtained global exponential stability criteria are applied to check whether a matrix is a nonsingular M-matrix, which can be conveniently tested; (iii) The proposed approach applies to most of discrete-time system models with impulses and delays.  相似文献   

7.
In this paper, we consider the stability of a class of stochastic delay Hopfield neural networks driven by G-Brownian motion. Under a sublinear expectation framework, we give the definition of exponential stability in mean square and construct some conditions such that the stochastic system is exponentially stable in mean square. Moreover, we also consider the stability of the Euler numerical solution of such equation. Finally, we give an example and its numerical simulation to illustrate our results.  相似文献   

8.
In the paper, we are concerned with a class of discontinuous BAM neural networks with hybrid time-varying delays and D operator. Based on the concept of Filippov solution, by means of the differential inclusions theory and the non-smooth analysis theory with Lyapunov-like approach, some new and novel sufficient conditions are derived to guarantee the existence, uniqueness and global exponential stability of almost-periodic solution of our proposed neural network model. To the authors’ knowledge, the results established in the paper are the only available results on the BAM neural networks, connecting the three main characteristics, i.e., discontinuous activation functions, hybrid time-varying delays and D operator. Some previous works in the literature are significantly extend and complement. Finally, two topical simulation examples are given to show the effectiveness of the established main results.  相似文献   

9.
In this paper, the discrete-time fuzzy cellular neural network with variable delays and impulses is considered. Based on M-matrix theory and analytic methods, several simple sufficient conditions checking the global exponential stability and the existence of periodic solutions are obtained for the neural networks. Moreover, the estimation for exponential convergence rate index is proposed. The obtained results show that the stability and periodic solutions still remain under certain impulsive perturbations for the neural network with stable equilibrium point and periodic solutions. Some examples with simulations are given to show the effectiveness of the obtained results.  相似文献   

10.
This paper is concerned with the stability of discrete-time high-order neural networks (HONNs) with delays and impulses. Without applying the Lyapunov function, some sufficient conditions, which ensure the exponential stability and asymptotic stability of considered networks involving delays and impulses, are derived based on the fixed point theory. Finally, several numerical examples are given to demonstrate the effectiveness of the obtained results.  相似文献   

11.
The paper considers a class of neural networks where flux-controlled dynamic memristors are used in the neurons and finite concentrated delays are accounted for in the interconnections. Goal of the paper is to thoroughly analyze the nonlinear dynamics both in the flux-charge domain and in the current-voltage domain. In particular, a condition that is expressed in the form of a linear matrix inequality, and involves the interconnection matrix, the delayed interconnection matrix, and the memristor nonlinearity, is given ensuring that in the flux-charge domain the networks possess a unique globally exponentially stable equilibrium point. The same condition is shown to ensure exponential convergence of each trajectory toward an equilibrium point in the voltage-current domain. Moreover, when a steady state is reached, all voltages, currents and power in the networks vanish, while the memristors act as nonvolatile memories keeping the result of computation, i.e., the asymptotic values of fluxes. Differences with existing results on stability of other classes of delayed memristor neural networks, and potential advantages over traditional neural networks operating in the typical voltage-current domain, are discussed.  相似文献   

12.
This paper is devoted to investigating the robust stochastic exponential stability for reaction-diffusion Cohen–Grossberg neural networks (RDCGNNs) with Markovian jumping parameters and mixed delays. The parameter uncertainties are assumed to be norm bounded. The delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Some criteria for delay-dependent robust exponential stability of RDCGNNs with Markovian jumping parameters are established in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing Matlab LMI toolbox. Numerical examples are provided to demonstrate the efficiency of the proposed results.  相似文献   

13.
In this paper, we investigate the problem of global exponential dissipativity of neural networks with variable delays and impulses. The impulses are classified into three classes: input disturbances, stabilizing and “neutral” type—the impulses are neither helpful for stabilizing nor destabilizing the neural networks. We handle the three types of impulses in a uniform way by using the excellent ideology introduced recently. To this end, we propose new techniques which coupled with more general Lyapunov functions to realize the ideology and it is shown that they are more effective. Exponential dissipativity conditions are established in terms of linear matrix inequalities (LMIs) and these conditions can be straightforwardly reduced to exponential stability conditions. Numerical results are given to show that the obtained conditions are effective and less conservative than the existing ones.  相似文献   

14.
In this paper, some sufficient conditions are obtained for existence and global exponential stability of a unique equilibrium point of competitive neural networks with different time scales and multiple delays by using nonlinear Lipschitz measure (NLM) method and constructing suitable Lyapunov functional. The results of this paper are new and they complete previously known results.  相似文献   

15.
This paper investigates the pth moment exponential stability of impulsive stochastic functional differential equations. Some sufficient conditions are obtained to ensure the pth moment exponential stability of the equilibrium solution by the Razumikhin method and Lyapunov functions. Based on these results, we further discuss the pth moment exponential stability of generalized impulsive delay stochastic differential equations and stochastic Hopfield neural networks with multiple time-varying delays from the impulsive control point of view. The results derived in this paper improve and generalize some recent works reported in the literature. Moreover, we see that impulses do contribute to the stability of stochastic functional differential equations. Finally, two numerical examples are provided to demonstrate the efficiency of the results obtained.  相似文献   

16.
In this issue, the robust synchronization for a class of uncertain Cohen–Grossberg neural networks is studied, in which neuron activations are modelled by discontinuous functions(or piecewise continuous functions). Pinning state-feedback and adaptive controllers are designed to achieve global robust exponential synchronization and global robust asymptotical synchronization of drive-response-based discontinuous Cohen–Grossberg neural networks. By applying the theory of non-smooth analysis theory and the method of generalized Lyapunov functional, some criteria are given to show that the coupled discontinuous Cohen–Grossberg neural networks with parameter uncertainties can realized global robust synchronization. Some examples and numerical simulations are also shown to verify the validity of the proposed results.  相似文献   

17.
This paper addresses the problem of global exponential dissipativity for a class of uncertain discrete-time BAM stochastic neural networks with time-varying delays, Markovian jumping and impulses. By constructing a proper Lyapunov–Krasovskii functional and combining with linear matrix inequality (LMI) technique, several sufficient conditions are derived for verifying the global exponential dissipativity in the mean square of such stochastic discrete-time BAM neural networks. The derived conditions are established in terms of linear matrix inequalities, which can be easily solved by some available software packages. One important feature presented in our paper is that without employing model transformation and free-weighting matrices our obtained result leads to less conservatism. Additionally, three numerical examples with simulation results are provided to show the effectiveness and usefulness of the obtained result.  相似文献   

18.
This paper discusses the stabilization criteria for stochastic neural networks of neutral type with both Markovian jump parameters. First, delay-dependent conditions to guarantee the globally exponential stability in mean square and almost surely exponential stability of such systems are obtained by combining an appropriate constructed Lyapunov–Krasovskii functional with the semi-martingale convergence theorem. These conditions are in terms of the linear matrix inequalities (LMIs), which can be some less conservative than some existing results. Second, based on the obtained stability conditions, the state feedback controller is designed. Finally, four numerical examples are provided to illustrate the effectiveness and significant improvement of the proposed method.  相似文献   

19.
In this letter, the existence and the global exponential stability of piecewise pseudo almost periodic solutions (PAPT) for bidirectional associative memory neural networks (BAMNNs) with time-varying delay in leakage (or forgetting) terms and impulsive are investigated by applying contraction mapping fixed point theorem, the exponential dichotomy of linear differential equations and differential inequality techniques. Furthermore, we give an explanatory example to illustrate the efficiency of the theoretical predictions.  相似文献   

20.
This paper deals with the exponential boundary stabilization for a class of Markov jump reaction-diffusion neural networks (MJRDNNs) with mixed time-varying delays, which is described by T-S fuzzy model. It is assumed that observed modes in boundary controller are not synchronized with the system modes. Based on a hidden Markov model (HMM), a novel asynchronous boundary control law is developed by using observed modes. Compared with the existing control strategies for distributed parameter systems, the asynchronous boundary control scheme can not only save the cost of the controller installation, but also bring less conservativeness. A delay-dependent sufficient condition to guarantee the exponentially mean square stability is established for T-S fuzzy MJRDNNs with mixed time-varying delays by constructing a Lyapunov functional and utilizing the vector-value Wirtinger-type inequality. Meanwhile, in order to get the designing scheme of the boundary controller, an equivalent LMI-based sufficient criterion is established. In the end, the effectiveness of the proposed results is illustrated by simulation examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号