首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Design of an optimal controller requires optimization of multiple performance measures that are often noncommensurable and competing with each other. Design of such a controller is indeed a multi-objective optimization problem. Non-dominated sorting in genetic algorithms-II (NSGA-II) is a popular non-domination based genetic algorithm for solving multi-objective optimization problems. This paper investigates the application of NSGA-II technique for the design of a flexible AC transmission system (FACTS)-based controller. The design objective is to improve the stability of the power system with minimum control effort. The proposed technique is applied to generate Pareto set of global optimal solutions to the given multi-objective optimization problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Further, a detailed analysis on the selection of control signals (both local and remote signals) on the effectiveness of the proposed controller is carried out and simulation results are presented under various loading conditions and disturbances to show the effectiveness and robustness of the proposed approach.  相似文献   

2.
Power-system stability improvement by a static synchronous series compensator (SSSC)-based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite-bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. Simulation results are presented and compared with a recently published modern heuristic optimization technique under various disturbances to show the effectiveness and robustness of the proposed approach. The performances of the proposed controllers are also evaluated under N−2 contingency situation.  相似文献   

3.
This paper presents the design and performance analysis of Proportional Integral Derivate (PID) controller for an Automatic Voltage Regulator (AVR) system using recently proposed simplified Particle Swarm Optimization (PSO) also called Many Optimizing Liaisons (MOL) algorithm. MOL simplifies the original PSO by randomly choosing the particle to update, instead of iterating over the entire swarm thus eliminating the particles best known position and making it easier to tune the behavioral parameters. The design problem of the proposed PID controller is formulated as an optimization problem and MOL algorithm is employed to search for the optimal controller parameters. For the performance analysis, different analysis methods such as transient response analysis, root locus analysis and bode analysis are performed. The superiority of the proposed approach is shown by comparing the results with some recently published modern heuristic optimization algorithms such as Artificial Bee Colony (ABC) algorithm, Particle Swarm Optimization (PSO) algorithm and Differential Evolution (DE) algorithm. Further, robustness analysis of the AVR system tuned by MOL algorithm is performed by varying the time constants of amplifier, exciter, generator and sensor in the range of ?50% to +50% in steps of 25%. The analysis results reveal that the proposed MOL based PID controller for the AVR system performs better than the other similar recently reported population based optimization algorithms.  相似文献   

4.
粒子群优化算法及在电力系统中的应用   总被引:1,自引:0,他引:1  
粒子群优化PSO(Particle Swarm Optimization)算法是一种有效的全局优化技术,PSO算法通过粒子间的相互作用在复杂搜索空间中寻求最优区域。PSO的优势在于算法简单,容易实现。从研究PSO算法及其在电力系统中的无功优化、最优潮流计算、电网扩展规划、机组优化组合、经济负荷分配等方面的应用现状出发,对其研究发展方向作了展望。  相似文献   

5.
This paper deals with the simultaneous coordinated design of power system stabilizer (PSS) and the flexible ac transmission systems (FACTS) controller. The problem of guaranteed cost reliable control with regional pole constraint against actuator failures is investigated. The state feedback controllers are designed to guarantee the closed loop system satisfying the desired pole region, thus achieving satisfactory oscillation damping and settling time, and having the guaranteed cost performance simultaneously. The proposed controllers satisfy desired dynamic characteristics even in faults cases. The controller's parameters are obtained using the linear matrix inequalities (LMI) optimization. Simulation results validate the effectiveness of this approach.  相似文献   

6.
In this paper, we propose to develop algorithmically and implement a nonlinear decentralized optimal control for multimachine power systems, based on a successive approximation approach for designing the optimal controller with respect to quadratic performance index. The advantage of this approach is to transform the high order coupling nonlinear two-point boundary value (TPBV) problem into a sequence of linear decoupling TPBV problem, which uniformly converges to the optimal control for nonlinear interconnected large scale systems. We apply this approach to a 3-machine power system which generators are strongly nonlinear interconnected, and containing possible uncertainties on the parameters. We demonstrate clearly via advanced simulations that this approach brings better performances than other decentralized controller, improving effectively transient stability of these power systems in few iterative sequences for different cases of perturbations.  相似文献   

7.
The problem of designing optimal process-specific rules for non-parametric tuning is undertaken in the paper. It is shown that producing non-parametric process-specific optimal tuning rules for PID controllers leads to the problem that can be characterized as optimization under uncertainty. This happens due to the fact that tuning rules, unlike tuning constants, are produced not for a particular process or plant model but for a set of models from a certain domain. The novelty of the proposed approach is that the problem of obtaining optimal tuning rules for a flow process is formulated and solved as a problem of optimization of an integral performance criterion parametrized through values that define the domain of available process models. The considered non-parametric tuning assumes the use of the modified relay feedback test (MRFT) recently proposed in the literature. It allows one to tune the PID controller satisfying the requirements to gain or phase margins that is achieved through coordinated selection of tuning rules and test parameters. This approach constitutes a holistic approach to tuning. In the present paper, optimal tuning rules coupled with MRFT, for flow loops, are proposed. Final results are presented in the form of tables containing coefficients of optimal tuning rules for the PI controller, obtained for a number of specified gain margins. The produced non-parametric tuning rules well agree with the practice of loop tuning.  相似文献   

8.
This paper studies the optimal finite-time passive control problem for a class of uncertain nonlinear Markovian jumping systems (MJSs). The Takagi and Sugeno (T–S) fuzzy model is employed to represent the nonlinear system with Markovian jump parameters and norm-bounded uncertainties. By selecting an appropriate Lyapunov-Krasovskii functional, it gives a sufficient condition for the existence of finite-time passive controller such that the uncertain nonlinear MJSs is stochastically finite-time bounded for all admissible uncertainties and satisfies the given passive control index in a finite time-interval. The sufficient condition on the existence of optimal finite-time fuzzy passive controller is formulated in the form of linear matrix inequalities and the designed algorithm is described as an optimization one. A numerical example is given at last to illustrate the effectiveness of the proposed design approach.  相似文献   

9.
This study investigates the problem of robust tracking control for interconnected nonlinear systems affected by uncertainties and external disturbances. The designed H dynamic output-feedback model reference tracking controller is parameterized in terms of linear matrix inequalities (LMIs), which is formulated within a convex optimization problem readily implementable. The resolution of such a problem, guarantying not only the quadratic stability but also a prescribed performance level of the resulting closed-loop system, enables to calculate concurrently the robust decentralized control and observation gain matrices. The established LMI conditions are computed in a single-step resolution to obtain all the controller/observer parameters and therefore to overcome the problem of iterative algorithm based on a multi-stage resolution leading in most cases to conservative and suboptimal solutions. Numerical simulations on diverse applications ranging from a numerical academic example to coupled inverted double pendulums and a 3-strongly interconnected machine power system are provided to corroborate the merit of the proposed control scheme.  相似文献   

10.
唐琴  朱芳来 《中国科技信息》2007,44(18):338-339
对于具有不确定参数的Lorenz混沌系统,通过参数调节和自适应技术讨论了两个同结构Lorenz混沌系统的同步问题。自适应控制器和参数调节律均由Lyapunov稳定行理论来确定。数字仿真表明了该方法的有效性和实用性。  相似文献   

11.
电网故障诊断的基本思想是根据保护动作原理将故障诊断问题表示为0-1规划问题。为了保证电网故障诊断的准确性和实时性,提出了一种改进的人工鱼群算法——二进制人工鱼群算法。分析了人工鱼群群聚行为和追尾行为最优方向的前进速度。并在此基础上与遗传算法、粒子群算法和量子免疫算法作了对比分析。结果表明:追尾行为最优方向的前进速度优于群聚行为,二进制人工鱼群算法综合性能优于遗传算法、粒子群算法和量子免疫算法。研究表明二进制人工鱼群算法具有收敛速度快、种群规模小和搜索能力强的特点。  相似文献   

12.
This paper discusses the problems of delay-dependent stability and stabilization of neutral saturating actuator systems with constant or time-varying delays. The problems of stabilization for neutral saturating actuator system with time-varying delay and parameter from the presented results, the condition obtained here does not need derivative information of the delay time and thus can be used to analyze the stabilization problem for a class of saturating actuator systems with time-varying delay, which is bounded but arbitrarily fast time-varying. Using the model transformation and quasi-convex optimization problem, we derive delay-dependent conditions for the stability of systems in terms of the linear matrix inequality. The stabilization conditions are formulated as linear matrix inequalities (LMIs) which can be solved by convex optimization algorithm. Moreover, the stability criteria are extended to design a stabilizing state feedback controller. Numerical examples show that the results obtained in this paper significantly improve the estimate of stability limit over some existing results reported previously in the literature.  相似文献   

13.
This paper addresses the problem of decentralized guaranteed cost stabilization (DGCS) of large-scale systems with delays both in the isolated subsystems and interconnections based on reduced-order observers. Sufficient conditions for the existence of delay-independent decentralized guaranteed cost controller (DGCC) are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMIs constraints is formulated to design the optimal DGCC which minimizes the guaranteed cost of the closed-loop large-scale systems. Finally, a simulation is performed to show the effectiveness of the proposed control scheme.  相似文献   

14.
The interconnected large-scale power systems are liable to performance degradation under the presence of sudden small load demands, parameter ambiguity and structural changes. Due to this, to supply reliable electric power with good quality, robust and intelligent control strategies are extremely requisite in automatic generation control (AGC) of power systems. Hence, this paper presents an output scaling factor (SF) based fuzzy classical controller to enrich AGC conduct of two-area electrical power systems. An implementation of imperialist competitive algorithm (ICA) is made to optimize the output SF of fuzzy proportional integral (FPI) controller employing integral of squared error criterion. Initially the study is conducted on a well accepted two-area non-reheat thermal system with and without considering the appropriate generation rate constraint (GRC). The advantage of the proposed controller is illustrated by comparing the results with fuzzy controller and bacterial foraging optimization algorithm (BFOA)/genetic algorithm (GA)/particle swarm optimization (PSO)/hybrid BFOA-PSO algorithm/firefly algorithm (FA)/hybrid FA-pattern search (hFA-PS) optimized PI/PID controller prevalent in the literature. The proposed approach is further extended to a newly emerged two-area reheat thermal-PV system. The superiority of the method is depicted by contrasting the results of GA/FA tuned PI controller. The proposed control approach is also implemented on a multi-unit multi-source hydrothermal power system and its advantage is established by Correlating its results with GA/hFA-PS tuned PI, hFA-PS/grey wolf optimization (GWO) tuned PID and BFOA tuned FPI controllers. Finally, a sensitivity analysis is performed to demonstrate the robustness of the proposed method to broad changes in the system parameters and size and/or location of step load perturbation.  相似文献   

15.
In this paper, a novel approach for the design of an indirect adaptive fuzzy output tracking excitation control of power system generators is proposed. The method is developed based on the concept of differentially flat systems through which the nonlinear system can be written in canonical form. The flatness-based adaptive fuzzy control methodology is used to design the excitation control signal of a single machine power system in order to track a reference trajectory for the generator angle. The considered power system can be written in the canonical form and the resulting excitation control signal is shown to be nonlinear. In case of unknown power system parameters due to abnormalities, the nonlinear functions appearing in the control signal are approximated using adaptive fuzzy systems. Simulation results show that the proposed controller can enhance the transient stability of the power system under a three-phase to ground fault occurring near the generator terminals.  相似文献   

16.
The H control problem is investigated in this paper for a class of networked control systems (NCS) with time-varying delay and packet disordering. A new model is proposed to describe the packet disordering phenomenon and then converted into a parameter-uncertain system with multi-step delay. Based on the obtained system model, a sufficient condition for robust stability of the NCS is derived. Furthermore, an optimization problem with linear matrix inequalities (LMIs) constraints is formulated to design the state feedback H controller such that the closed-loop NCS is robust stable and has an optimal H disturbance attenuation level. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

17.
This paper is aimed to investigate the operating characteristics of a static synchronous compensator (STATCOM) integrated with superconducting magnetic energy storage (SMES) for high power applications in the transmission network level. The STATCOM controller topology comprises multi-level multi-pulse neutral-point clamped-type (NPC) voltage source inverters (VSIs) using the harmonics cancellation technique, and incorporates a SMES coil. An innovative two-quadrant multi-level dc-dc converter is proposed to effectively interface the STATCOM with the superconducting coil using a buck-boost topology with neutral point voltage control capabilities; thus enabling to simultaneously control both active and reactive power exchange with the high voltage power system. A detailed analysis of major system variables is presented, including analytical results and digital simulations using the MATLAB/Simulink environment. Moreover, a three-level control scheme is designed, including a full decoupled current control strategy in the d-q reference frame with a novel controller to prevent the STATCOM dc bus capacitors voltage drift/imbalance and an enhanced power system frequency controller.  相似文献   

18.
This paper investigates the joint design of power control and beamforming codebooks for limited-feedback multiple-input single-output (MISO) wireless systems. The problem is formulated as the minimization of the outage probability subject to the transmit power constraint and cardinality constraints on the beamforming and power codebooks. We show that the two codebooks need to be designed jointly in this setup, and provide a numerical method for the joint optimization. For independent and identically distributed (i.i.d.) Rayleigh channel, we also propose a low-complexity approach of fixing a uniform beamforming codebook and optimizing the power codebook for that particular beamformer, and show that it performs very close to the optimum. Further, this paper investigates the optimal tradeoffs between beamforming and power codebook sizes. We show that as the outage probability decreases, optimal joint design should use more feedback bits for power control and fewer feedback bits for beamforming. The jointly optimized beamforming and power control modules combine the power gain of beamforming and diversity gain of power control, which enable it to approach the performance of the system with perfect channel state information as the feedback link capacity increases—something that is not possible with either beamforming or power control alone.  相似文献   

19.
徐晓龙  孙炳楠  付军 《科技通报》2007,23(6):878-884
针对一般智能理论辨识方法在结构系统辨识中存在的问题,提出一种基于粒子群优化算法(PSO)的辨识方法。用粒子群中的粒子表征结构物理参数,以最大似然准则为粒子群优化算法的适应度函数,建立了结构系统的辨识模型。数值仿真分析表明,粒子群优化算法可以精确辨识出结构系统的物理参数。  相似文献   

20.
In this paper a new integrated observer-based fault estimation and accommodation strategy for discrete-time piecewise linear (PWL) systems subject to actuator faults is proposed. A robust estimator is designed to simultaneously estimate the state of the system and the actuator fault. Then, the estimate of fault is used to compensate for the effect of the fault. By using the estimate of fault and the states, a fault tolerant controller using a PWL state feedback is designed. The observer-based fault-tolerant controller is obtained by the interconnection of the estimator and the state feedback controller. We show that separate design of the state feedback and the estimator results in the stability of the overall closed-loop system. In addition, the input-to-state stability (ISS) gain for the closed-loop system is obtained and a procedure for minimizing it is given. All of the design conditions are formulated in terms of linear matrix inequalities (LMI) which can be solved efficiently. Also, performance of the estimator and the state feedback controller are minimized by solving convex optimization problems. The efficiency of the method is demonstrated by means of a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号