首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
众所周知,过二次曲线Ax~2+Cy~2+Dx+Ey+F=0 (g)上一点P_1(x_1,y_1)的切线方程为Ax_1x+Cy_1y+D((x_1+x)/2)+E((y_1+y)/2)+F=0(h)。这是一个将切点(曲线上的点)的坐标x_1、y_1与切线上的点(曲线外的点)的坐标x、y联系起来的公式。当已知切点P_1的坐标P_1(x_1,y_1)时,将x、y看作变量,则(h)为过P_1的切线上点的坐标满足的方程,即过P_1的切线方程。当已知曲线外一点P的坐标P(x,y)时,将x_1、y_1看作变量,则(h)  相似文献   

2.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

3.
高中《解析几何》课本(必修)第62页给出过“已知圆x~2 y~2=r~2上一点M(x_0,y_0)的切线方程是x_0x y_0y=r~2”。有趣的是在某些条件下,这种形式的方程不表示圆的切线。 设M(x_0,y_0)是圆x~2 y~2=r~2外的一点。从M引圆的两条切线MA、MB,其中A(x_1,y_1)、B(x_2,y_2)为切点。那么,MA的方程是x_1x y_1y=r~2。  相似文献   

4.
从点P作二次曲线C的两条切线,切点分别是A、B,称线段AB为点P对C的切点弦。本文在建立切点弦(所在直线)方程的基础上,研究有关切点弦的一些性质。一、切点弦方程例1.求椭圆x~2/a~2+y~2/b~2=1外一点P(x_0,y_0)对椭圆的切点弦AB的方程。  相似文献   

5.
一、切点弦方程在平面解析几何中常见这样一个问题:“过圆外一点P(x_0,y_0)引圆x~2+y~2=R~2的两条切线求经过两个切点的直线方程。”这个问题有两种初等解法:  相似文献   

6.
人教版试验教材数学第二册(上)§7.7,例2:已知圆的方程是x~2+y~2=r~2,求经过圆上一点M(x_0,y_0)的圆的切线方程。本例题求解方法很多(结果为x_0x+y_0y=r~2),在此不再赘述,下面从三个方面进行引申和探究,供赏析。引申一:若圆的方程是(x-a)~2+(y-b)~2=r~2,那么经过圆上一点M(x_0,y_0)的切线方程还是x_0x+y_0y=r~2吗?下面我们来探求过点M(x_0,y_0)的圆的切线方程。方法一:用例2的方法(利用点斜式方程求解),可求得过点M(x_0,y_0)的圆的切线方程为  相似文献   

7.
每期一题     
题:过点A(O,(10)~(1/2))向圆x~2+y~2=5引两条切线,求它们的方程。(统编数学高中第二册121页笫6题。解法一利用过圆上一点的切线方程如图,设过点A(0,(10)~(1/2))的直线一与圆x~2+y~2=5相切于F_1(x_1,y_1),根据过圆上一点求切线方程的公式(请参看统编数学高中第二册121页第5题),得圆的切线方程为x_1x+y_1y=5 ①  相似文献   

8.
<正>一、教学节录1.在问题求解中培养思维能力。师:请大家证明下列例题:已知圆C的方程是x2+y2+y2=r2=r2,求证:经过圆C上一点M(x_0,y_0)的切线方程是x_0x+y_0y=r2,求证:经过圆C上一点M(x_0,y_0)的切线方程是x_0x+y_0y=r2。(苏教版高中数学必修2第117页习题第11题)(给学生思考的时间,先由学生独立思考,  相似文献   

9.
求圆锥曲线的切线方程,由于牵涉的知识面较广和解题中的技巧性较强,历来是学生们课外学习中一个饶有兴趣的内容,本文的目的在于,从不同于常规的角度去审视切线,并从中得到几种求切线方程的方法。一切线与平行弦中点轨迹已知曲线Ax~2+By~2+Cx+Dy+F=0 (1) 设P(x_1,y_1),Q(x_2,y_2)是曲线上两点,PQ的斜率为K,M(x,y)为PQ为中点。则 Ax_1~2+By_1~2+Cx_1+Dy_1+F=0 (2)  相似文献   

10.
F(x.y)=a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)x+2a_(23)y+a_(33)=0 (1)设点P_0(x_0,y_0)为不在曲线(1)的焦点所在区域内的点,因而过P_0可向曲线(1)作二条切线,两个切点分别为P_1(x_1,y_1),P_2(x_2,y_2),称联P_1P_2的直线l为曲线(1)关于P_0的切点弦。本文给出l的一种简易求法。 命题:若P_0(x_0,y_0)为平面上不在曲线(1)的焦点区域内的任一点,则曲线(1)关于P_0的切点弦方程为:  相似文献   

11.
在解析几何中,涉及曲线与直线相交时所截得弦的长度的问题,常需设出两交点的坐标,借助由直线方程和曲线方程形式的一元二次方程,利用韦达定理解之.这是一种在高考中常用的解题策略,本文举例介绍此类题目的解法,供读者参考.例1 由圆 x~2 y~2=r~2外一点 P(x_0,y_0)向圆引切线,求两切点连线的方程.解:设过点 P 的两条切线与圆相切于两点A(x_1,y_1)、B(x_2,y_2),则过这两点的切线为  相似文献   

12.
从一点P(x_0,y_0),引圆锥曲线的两条切线PR、PQ,切点为R、Q,那末以R、Q为端点的弦PQ叫切点弦,切点弦所在的直线称为点P关于圆锥曲线的极线;而P点称为极线关于圆锥曲线的极点。极线方程也叫切点弦方  相似文献   

13.
错在哪里     
1.一些圆与两个坐标轴同时相切,求圆心的轨迹方程。解:设圆的方程是(x-a)~2 (y-b)~2=r~2,它与x轴y轴同时相切的条件是|a|=|b|=r,那么圆心坐标(a,b)是方程x±y=0的解,因此圆心轨迹方程是x±y=0。本题错在没有把原点排除在外。 2.已知A(x_1,y_1)是圆x~2 y~2=r~2上的一点,求证,与圆相切于A点的切线方程是x_1x y_1y=r~2。  相似文献   

14.
在平面上,一点(x_0,y_0)对于常态二次曲线的切点弦方程,在形式上是和切点为(x_0,y_0)的关于二次曲线的切线方程是一样的。当然,这时必须存在过点(x_0,y_0)的关于二次曲线的实切线。因而对于不在曲线上的点(x_0,y_0)是受到位置上的限制的。例如,对于椭圆,点(x_0,y_0)必须在椭圆外部。 对于切点弦方程,笔者作如下猜想,即当自点(x_0,y_0)不能引常态二次曲线的实切线时,虚切点弦方程依然取实切点弦方程的相同形式。为此,平面上嵌入复点。下面对猜想进行检验。  相似文献   

15.
引例由P(1,3)引圆x2 y2=9的切线,求两切线所在直线l的方程.(即求切点弦直线方程)解如图,P(1,3)在圆外,故过P点引圆的切线有PM,PN两条,其中M,N为切点.求切点弦直线只需求出M,N的坐标即可.圆的切点弦直线方程$浙江省桐乡第一中学@沈国莲~~  相似文献   

16.
(1)如果圆的方程是x~2+y~2+Dx+Ey+F=0,则从圆外一点M_1(x_1,y_1)到圆的切线长是 t=(x_1~2+y_1~2+Dx_1+Ey_1+F_1)~(1/2) (2)如果圆的方程是 (x-a)~2+(y-b)~2=r~2,则从圆外一点M_1(x_1,y_1)到圆的切线长是: t=((x_1-a)~2+(y_1-b)~2-r~2)~(1/2) 这便是部编高中数学第二册复习题六的  相似文献   

17.
《平面解析几何》(必修)第62页例3有这样一个问题:“已知圆的方程 x~2 y~2=r~2,求经过圆上一点 M(x_0,y_0)的切线方程.”易知所求切线方程为x_0x y_0y=r~2,  相似文献   

18.
<正>过圆x2+y2=r2上一点P0(x0,y0)作该圆的切线,只有一条,易知其方程为x0x+y0y=r2.当点P0(x0,y0)在圆x2+y2=r2外时,切线有两条,设切点分别为A、B,那么如何求直线AB的方程呢?本文借助一道高考题展开.例1(2013年山东高考题)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为().(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0  相似文献   

19.
2004 年福建省高考理工 22 题,文史 21 题均涉及到如下命题: P 是抛物线C : y = x2 /2上一点,直线l 过点 P 且与抛物线C 交于另一点Q ,若直线l 与过点 P 的切线垂直,求线段PQ 中点 M 的轨迹方程. 上述命题中,线段 PQ为过切点且与切线垂直的弦,点 M 为线段 PQ 的中点.这是一道求受限动弦中点轨迹的问题,本文探究此类轨迹方程的一般形式,并予以推广. 定理 1 抛物线 x2 = 2py的弦 PQ垂直于过点 P 的切线,则 PQ中点M 的轨迹方程为 y = x2 / p p3 /(2x2) p . 证明 设 P(x1, y1),Q(x2, y2) ,M(x, y) ,由 y = x2 得 y'=…  相似文献   

20.
在直线x=-m(m>0)上任取一点P作抛物线y2=2px(p>0)的切线,切点为A、B,则直线AB过定点(m,0).过抛物线y2=2px(p>0)的外任一点P作抛物线的两条切线,切点分别为A,B,弦AB的中点Q,则PQ平行于x轴;P与切点弦中点的连线恰好被抛物线平分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号