首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
已知圆心(a,b),半径为r的圆的方程(x-a)2+(y-b)2=r2叫圆的标准方程.把它展开整理,可得到x2+y2+Dx+Ey+F=0的形式.  相似文献   

2.
求圆的方程的基本方法是待定系数法.若已知条件与圆心、半径有关,可设圆的方程为标准式,建立关于a、b、r的方程组,解出待定系数a、b、r即可;若已知条件涉及到圆过几个点,则常用圆的一般方程,建立关于D、E、F的方程组,解出待定系数D、E、F而获解;若所求的圆过两已知圆C1、C2的交点(或一直线与一圆的交点),一般用共轴圆系C1+λC2=0,建立方程f(λ)=0,解出λ即可得到所求圆方程.但如何构建关于待定系数a、b、r或D、E、F的方程组和关于λ的方程,则是解题成败的关键.本文仅就构建这类方程(组)的几种常见技巧例示如下.  相似文献   

3.
ax~2+bx+c=0(a、b、c是常数,a≠0)这种形式叫做一元二次方程的一般形式,这里的条件是a≠0.在解决问题时,同学们往往会忽略这一个隐含条件,导致解题失误.例1:已知方程kx~2-(2k+1)x+k=0有两个不相等的实数根,求k的取值范围.错解:因为方程有两个不相等的实数根,所以b~2-4ac>0,即【-(2k+1)】~2-4k~2>  相似文献   

4.
本文介绍怎样利用方程根的定义构造方程,巧解一类数学题. 例1 已知:ab≠1,且有5a2+2002a+8=0及8b2+2002b+5=0,求a/b的值. 分析:第二个方程可变形为: 5(1/b)+2002(1/b)1+8=0,  相似文献   

5.
解析几何中求解二次曲线问题时 ,有时借助退化的二次曲线 ,可以优化解题过程 ,简化运算 ,使一些曲线方程的求解问题巧妙解决 .1 退化曲线的类型1 方程 (x -D2 ) 2 +(y -E2 ) 2 =D2 +E2 -4F4,当D2 +E2 -4F =0时 ,表示圆的极限情形 :“点圆” .2 方程(x -m) 2a2 +(y -n) 2b2 =k ,(k≥0 ) ,当k=0时 ,表示椭圆的极限情形 :“点椭圆” .3 方程(x-m) 2a2 -(y-n) 2b2 =k ,当k= 0时 ,表示双曲线的极限情形 :渐近线 .4 方程Ax2 +Bxy +Cy2 +Dx +Ey+F= 0 (A ,B ,C不同时为 0 )若能表示为 (ax +by+m) (ax +by+n) =0 (a ,b不同时为 0且m ≠n) ,…  相似文献   

6.
曲线系方程所揭示的是一类曲线的共性。用曲线系解题,简洁而干脆。略举数例,以供参考。例1 设圆系方程x~2+y~2-2axcosθ-2bysinθ=0(a>0,b>0,a>b,a,b是定常数,θ是未定常数),求圆系中最大圆与最小圆公共弦的方程。解:对原方程配方:(x-acosθ)+ (y-bsinθ)~2=a~2cos~2θ+b~2sin~2θ,可知圆心轨迹方程为x~2/a~2+y~2/b~2=1,易知,最大圆方程:(x±a)~2+y~2=a~2,最小圆方程:x~2+(y±b)~2=b~2。得圆系方程;[(x±a)~2+y~2-a~2]+λ[x~2+(y±b)~2-b~2]=0。令λ=-1。便得所求的最大圆与最小圆的公共弦方程ax±by=0。  相似文献   

7.
1·已知a,b为正实数,且满足a+b=2.(1)求1+1a+11+b的最小值;(2)猜想1+1a2+1+1b2的最小值,并证明;(3)求1+1an+1+1bn的最小值;(4)若a+b=2改成a+b=2p(p≥1),猜想1+1an+1+1bn的最小值.2·已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.3·设曲线C:y=x2(x>0)上的点P0(x0,y0),过P0作曲线C的切线与x轴交于Q1,过Q…  相似文献   

8.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

9.
定理1圆F以圆锥曲线的一个焦点F为圆中学教研·中学教研·心,以其通径之半为直径.过F的直线l与圆锥曲线、圆F依次交于点A,B,C,D,则|AB|·|CD|为定图1值(其值为圆半径的平方).下面以椭圆为例证明该定理,对于其它圆锥曲线不难类似证明.如图1,设椭圆x2a2+y2b2=1(a>b>0),圆F:(x-c)2+y2=b44a2(其圆心为椭圆的右焦点,直径为通径之半,即r=b22a).过F的直线l与椭圆、圆F依次交于A,B,C,D,欲证|AB|·|CD|=b44a2.证明若直线l的斜率不存在,验证可知结论成立.若直线l的斜率存在,设l的方程为y=k(x-c),①将①代入椭圆方程,整理得(b2+a2k2)x2-2a2ck…  相似文献   

10.
贵刊1990年第五期《方程组的解法及其应用》一文中的例5及其解法是: 若a、b为实数,且a~2+3a+1=0,b~2+3b+1=0,求b/a+a/b的值。(1987年泉州市初二双基邀请赛题) 解:由已知及方程根的定义可知,a、b是方程x~2+3x+1=0的两根,由韦达定理得a+b=-3,ab=1,∴b/a+a/b=(a~2+b~2)/ab=((a+b)~2-2ab)/ab  相似文献   

11.
一、圆 圆心为C(a,b)、半径是r的圆的方程是(x-a)~2+(y-b)~2=r~2 (A)我们把方程(A)叫做圆的标准方程。 如果圆心在坐标原点,这时a=0,b=0,那么圆的方程是x~2+y~2=r~2。  相似文献   

12.
直线与圆是解析几何知识的基础,也是近几年高考的热点内容,因此,熟悉、掌握一些直线与圆综合问题十分必要. 例1已知圆C与圆C1:x2+y2-2x—=0外切,并且与直线l:x+ 3~(1/2)y=0相切与点P(3,-3~(1/2)).求此圆C的方程. 求圆C的方程要先确定圆心的坐标和半径的长.可设圆C的圆心为C(a,b),半径为r,因为圆C与圆C1相外切,且圆C1的半径为1,所以两圆的圆心距|CC1|=r+1.又因为与直线l相切与点P,所以圆C的圆心在过P点与直线l垂直的直线上,且圆心到直线l的距离等于半径r,依据圆的几何性质即可求出参数a,b、r 解:设所求圆的圆心为C(a,b),半径为r.  相似文献   

13.
已知方程 asinx+bcosx=c。①其中a、b、c都是给定的实数,且a、b不同时为零,x∈[x_0,x_0+2π),x_0是任一固定常数。设△=a~2+b~2-c~2,则当△>0时,方程①有两个不相等的实数根; 当△=0时,方程①有两个相等的实数根; 当△<0时,方程①没有实数根; 证明∵a、b不同时为零, ∴(a~2+b~2)~(1/2)≠0。∴sin(x+φ)=C/((a~2+b~2)~(1/2))。②(其中φ是辅助角,a≠0时,tgφ=b/a;b≠0  相似文献   

14.
进行式的恒等变形时,常用到下面的技巧。一、同加、同减例(1) 已知(a+b)~2=7,(a-b)~2=3,求a~4+b~4的值。解:将(a+b)~2=7,(a-b)~2=3两式分别相加、相减得: 2(a~2+b~2)=10,4ab=4。即 a~2+b~2=5,ab=1 ∴ a~4+b~4=(a~2+b~2)~2-2a~2b~2=5~2-2×1~2=23。例(2) 设a>0,b>0,a~2+b~2=7ab,求证: lg[1/3(a+b)]=1/2(lga+lgb)。解:a~2+b~2=7ab等式两边同加上2ab得: (a+b)~2=9ab。即((a+b)/3)~2=ab,  相似文献   

15.
错在哪里     
1.一些圆与两个坐标轴同时相切,求圆心的轨迹方程。解:设圆的方程是(x-a)~2 (y-b)~2=r~2,它与x轴y轴同时相切的条件是|a|=|b|=r,那么圆心坐标(a,b)是方程x±y=0的解,因此圆心轨迹方程是x±y=0。本题错在没有把原点排除在外。 2.已知A(x_1,y_1)是圆x~2 y~2=r~2上的一点,求证,与圆相切于A点的切线方程是x_1x y_1y=r~2。  相似文献   

16.
“已知a>0,b>0,a+b=1,求证(a+1/a)~2+(b+1/b)~2≥25/2”,这是一个常见的习题,值得深入讨论一番。为了便于本文的讨论,先给出如下解法: ∵ a>0,b>0,a+b=1 ∴ 1/a+1/b=(a+b)(1/a+1/b)≥4 ∴ (a+1/a)~2+(b+1/b)~2≥ 2·((a+b+1/a+1/b)/2))~2≥ 2·(1+4/2)~2=25/2 这里,用到了不等式(a_1+a_2)(a_1~(-1)+a_2~(-1)≥2~2和a_1~2+a_2~2≥2((a_1+a_2)/2)~2.实际上,一般地有不等式(sum from k=1 to m ak)(sum from k=1 to m a_k~(-1))≥m~2和  相似文献   

17.
在直角坐标系下,对形如 x~2 y~2 Dx Ey F=0 (D~2 E~2-4F>0) 及(x-a)~2 (y-b)~2=r~2的方程,易知都是圆的方程。其圆心坐标分别是(-D/2,-E/2)及(a,b),半径分别为(D~2 E~2-4F)~(1/2)/2及r。但对极坐标系下圆方程的一般形式,在统编教材高中数学二册未作介绍。在教学中,学生对什么形式的极坐标是圆的方程以及如何根据圆的极坐标方程,找出它的圆心坐标和半径,往往感到困难。笔者认为有必要对此作一般性地讨论。在极坐标系中(如图),已知圆心C(ρ_0,θ_0),半径为r。设P为圆上任意一点,  相似文献   

18.
例1椭圆x2a2+y2b2=1(a>b>0)上与两个焦点的连线的夹角为90°的点的个数不可能为A.4B.3C.2D.0解析如图1所示,以椭圆中心为圆心、过两个焦点作圆,因b与c的大小关系未知,则可能有三种情形:若c>b,则圆与椭圆有四个交点,每个交点与两个焦点的连线的夹角都为90°;若c=b,则圆与椭圆相切于两个点,其与两个焦点的连线的夹角都为90°;若cb>0)的两个焦点为F1、F2,点P是椭圆上一动点.若∠F1PF2=π2,求椭圆离心率的范围.解析因∠F1PF2=π2,则以F1F2为直径的圆与椭圆相交于四个…  相似文献   

19.
吕辉 《数学教学》2011,(5):23-24,48
在解析几何中常见这样一类题:``(1)已知椭圆方程为x2/a2+y2/b2=1(a>b>0),两焦点为F1、F2,如果椭圆上存在点P,使得∠F1PF2=π/2,求该椭圆离心率e的取值范围.  相似文献   

20.
在各类考试中经常出现条件为a+b+c=0的问题.本文分类举例,说明如何灵活应用条件a+b+c=0,使问题得到解决.一、若a+b+c=0,则有a+b=-c;b+c=-a;c+a=-b例1(1998年全国初中生数学竞赛题)已知:abc≠0,并且a+bc=b+ca=c+ab=p,那么直线y=px+p一定过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限解(1)若a+b+c=0,则a+b=-c.∴p=a+bc=-1,此时直线方程为y=-x-1,经过二、三象限.(2)若a+b+c≠0,由等比性质可得:(a+b)+(b+c)+(c+a)c+a+b=p,∴p=2.此时直线方程为y=2x+2,经过一、二、三象限.故y=px+q一定经过二、三象限.故选(B).例2(2002年…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号