首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper is concerned with the event-based weighted residual generator design via non-parallel distribution compensation (PDC) scheme for fault diagnosis in discrete-time T–S fuzzy systems, under consideration of the imperfect premise matching membership functions. An event-triggered mechanism is firstly introduced to save communication resources, which leads to the premise variables of the system and observer to be asynchronous. Then, a fuzzy diagnostic observer with mismatched premise variables is designed to estimate the unmeasurable states of the system. Moreover, by using non-PDC method, a diagnostic observer-based weighted residual generator is established to improve the fault detection (FD) performance by using the information provided by each local system, in which the membership functions structure of the diagnostic observer and residual generator need not to be the same as the systems, and the L/L2 and L FD scheme is used to optimize the FD performance. Finally, two simulation results are provided to show the efficiency of the proposed non-PDC method.  相似文献   

2.
Robust fault detection for a class of nonlinear time-delay systems   总被引:1,自引:0,他引:1  
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. Firstly, a reference residual model is introduced to formulate the robust fault detection filter design problem as an H model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H optimization control technique, the existence conditions of the robust fault detection filter for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.  相似文献   

3.
In this paper, the event-triggered non-fragile H fault detection filter is designed for a class of discrete-time nonlinear systems subject to time-varying delays and channel fadings. The Lth Rice fading model is utilized to reflect the actual received measurement signals, and its channel coefficients own arbitrary probability density functions on interval [0,1]. The event-based filter is constructed to reduce unnecessary data transmissions in the communication channel, which only updates the measurement signal to the filter when the prespecified “event” is triggered. Multiplicative gain variations are utilized to describe the phenomenon of parameter variations in actual implementation of the filter. Based on Lyapunov stability theory, stochastic analysis technology along with linear matrix inequalities (LMIs) skills, sufficient conditions for the existence of the non-fragile fault detection filter are obtained which make the filtering error system stochastically stable and satisfy the H constraint. The gains of the filter can be calculated out by solving the feasible solution to a certain LMI. A simulation example is given to show the effectiveness of the proposed method.  相似文献   

4.
This paper studies vector incremental L2-gain and incremental stability for switched nonlinear systems using individual incremental gains and multiple storage functions. Firstly, a vector incremental L2-gain concept for switched nonlinear systems is proposed. Each subsystem is not required to have incremental L2-gain, but it has its own incremental L2-gain and the related storage function, when it is active. The transformation of “energy” from the active subsystem to each inactive subsystem is characterized by cross-supply rates. Then, we show that a switched nonlinear system who has vector incremental L2-gain can be incrementally stabilized under some constraints on the energy change of inactive subsystems. Secondly, a state-dependent switching law is designed to achieve vector incremental L2-gain, even if each subsystem does not have incremental L2-gain in the classic sense. Thirdly, each switched system is not required to have vector incremental L2-gain, but the feedback interconnection of switched nonlinear systems is incrementally stabilized by the design of a composite switching law. The switching law allows the two switched systems switch asynchronously. Two examples are provided to verify the effectiveness of the proposed method.  相似文献   

5.
The problem of observer-based finite-time H control for discrete-time Markov jump systems with time-varying transition probabilities and uncertainties is studied in this paper, in which time-varying transition probabilities are modelled as convex polyhedron, and the parameter uncertainty satisfies norm-bounded. First of all, a Luenberger observer is designed to measure the system state. Then, observer-based controller is constructed to ensure the stochastic finite-time boundedness of the resulting closed-loop system with an H performance. Furthermore, sufficient conditions are derived in light of linear matrix inequalities. In the end, the flexibility and applicability of the developed methods are demonstrated by two illustrative examples.  相似文献   

6.
7.
《Journal of The Franklin Institute》2019,356(17):10335-10354
This paper is devoted to investigate the designs of the event-based distributed state estimation and fault detection of the nonlinear stochastic systems over wireless sensor networks (WSNs). The nonlinear stochastic systems as well as the filters corresponding to the multiple sensors are represented by interval type-2 Takagi–Sugeno (T–S) fuzzy models. (1) A new type of fuzzy distributed filters based on event-triggered mechanism is established corresponding to the nodes of the WSN. (2) The overall stability and performance, that is mean-square asymptotic stability in H sense, of the event-driven fault detection system is analyzed based on Lyapunov stability theory. (3) New techniques are developed to cope with the problem of parametric matrix decoupling for solving the distributed filter gains. (4) Finally, the desired event-based distributed filter matrices are designed subject to the numbers of the fuzzy rules and a series of matrix inequalities. A simulation case is detailed to show the effectiveness of the presented event-based distributed fault detection filtering scheme.  相似文献   

8.
In this paper, we consider the problem of mixed H and passivity control for a class of stochastic nonlinear systems with aperiodic sampling. The system states are unavailable and the measurement is corrupted by noise. We introduce an impulsive observer-based controller, which makes the closed-loop system a stochastic hybrid system that consists of a stochastic nonlinear system and a stochastic impulsive differential system. A time-varying Lyapunov function approach is presented to determine the asymptotic stability of the corresponding closed-loop system in mean-square sense, and simultaneously guarantee a prescribed mixed H and passivity performance. Further, by using matrix transformation techniques, we show that the desired controller parameters can be obtained by solving a convex optimization problem involving linear matrix inequalities (LMIs). Finally, the effectiveness and applicability of the proposed method in practical systems are demonstrated by the simulation studies of a Chua’s circuit and a single-link flexible joint robot.  相似文献   

9.
This paper investigates the problem of event-triggered fault detection filter design for nonlinear networked control systems with both sensor faults and process faults. First, Takagi–Sugeno (T–S) fuzzy model is utilized to represent the nonlinear systems with faults and disturbances. Second, a discrete event-triggered communication scheme is proposed to reduce the utilization of limited network bandwidth between filter and original system. At the same time, considering network-induced delays and event-triggered scheme, a novel T–S fuzzy fault detection filter is constructed to generate a residual signal, which has nonsynchronous premise variables with the original T–S fuzzy system. Then, the fuzzy Lyapunov functional based approach and the reciprocally convex approach are developed such that the obtained sufficient conditions ensure that the fuzzy fault detection system is asymptotically stable with H performance and is less conservative. All the conditions are given in terms of linear matrix inequalities (LMIs), which can be solved by LMI tools in MATLAB environment. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed results.  相似文献   

10.
This paper is concerned with the observer-based H finite-time control problem for linear parameter-varying (LPV) systems with parameter-varying time delays and external disturbance. The main contribution is to design an observer-based H finite-time controller such that the resulting closed-loop system is uniformly finite-time bounded and satisfies a prescribed H disturbance attenuation level in a finite-time interval. By using the delay- and parameter-dependent multiple Lyapunov–Krasovskii functional approach, sufficient criteria on uniform H finite-time stabilization via observer-based state feedback are presented for the solvability of the problem, which can be tackled by a feasibility problem in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the validity of the proposed theoretical results.  相似文献   

11.
12.
This paper is concerned with the observer-based H control for a class of singular Markov jump systems over a finite-time interval, where the transition probability (TP) is time-varying and is limited to a convex hull. Due to the limited capacity of network medium, packet losses are presented in the underlying systems. Firstly, using a stochastic Lyapunov functional, a sufficient condition on singular stochastic H finite-time boundedness for the corresponding closed-loop error systems is provided. Subsequently, a linear matrix inequality (LMI) condition on the existence of the H observer-based controller is developed from a new perspective. Finally, three numerical examples are provided to illustrate the effectiveness of the proposed controller design method, wherein it is shown that the proposed method yields less conservative results than those in the literature.  相似文献   

13.
This paper concerns the simultaneous fault detection and control (SFDC) problem for a class of nonlinear stochastic switched systems with time-varying state delay and parameter uncertainties. The switching signal of detector/controller unit (DCU) is assumed to be with switching delay, which results in the asynchronous switching between the subsystems and DCU. By constructing a switching strategy depending on the state and switching delays, new sufficient conditions expressed by a set of linear matrix inequalities (LMIs) is derived to design DCU gains. This problem is formulated as an H optimization problem and both mean square exponential stability and fault detection of augmented system are considered. A numerical example is finally exploited to verify the effectiveness and potential of the achieved scheme.  相似文献   

14.
The paper investigates the fault detection problem for a class of nonlinear networked control systems with both communication constraints and random transmission delays. The access status of the sensors is governed by a stochastic event, which is modeled as a Markov chain taking matrix values in a certain set. The main task of this paper is to design a mode-dependent fault detection filter, such that for Markov sensors assignment, random network-induced delays and the unknown input signal, the error between the fault and the residual signal is minimized. And the resulting fault detection dynamics is formulated as an HH filtering problem of a Markov jump system. The linear matrix inequality-based sufficient conditions for the existence of the fault detection filter are obtained. Finally, two examples are given to show the effectiveness of the developed method.  相似文献   

15.
In this paper, we investigate the incremental H performance problem for a class of stochastic switched nonlinear systems by using a state-dependent switching law and the maximum and minimum dwell time approach. By resorting to the state-dependent switching law, some sufficient conditions are provided to cope with the incremental H performance problem, which can be applied even if all subsystems are unstable. Then, based on the maximum and minimum dwell time scheme, the incremental H performance problem to be solvable is derived for two cases: one is all subsystems are incrementally globally asymptotically stable in the mean(IGASiM), another is both IGASiM subsystems and unstable subsystems coexist. When all subsystems are IGASiM, the stochastic switched nonlinear system is IGASiM and possesses a incremental L2-gain under given conditions. When both IGASiM subsystems and unstable subsystems coexist, if the activation time ratio between IGASiM subsystems and unstable ones is not less than a specified constant, the sufficient conditions for the incremental H performance of the stochastic switched nonlinear system are given. Two numerical examples are given to illustrate the validity of methods proposed.  相似文献   

16.
This paper addresses the filtering problem for the one-sided Lipschitz nonlinear systems under measurement delays and disturbances using a generalized observer. A generalized architecture for filtering of the one-sided Lipschitz nonlinear systems with output delays is explored, which exhibits diverging manifolds, namely, the conventional static-gain filter and the dynamical filter, and can be employed to render robust stability of the filtering error dynamics. A matrix inequality based framework is obtained by employing a Lyapunov?Krasovskii (LK) functional, whose derivative is exploited through Jensen's inequality, one-sided Lipschitz condition, quadratic inner-boundedness inequality and range of the measurement delay, resulting into L2 stability for the filtering error system. Generalized filter design for the Lipschitz nonlinear systems with delayed outputs and specific results for the delay-dependent and delay-rate-independent filtering schemes for the one-sided Lipschitz nonlinear systems are deduced from the proposed approach. Convex optimization techniques are employed to achieve a solution for the nonlinear constraints through linear matrix inequalities by employing cone complementary linearization approach. Illustrative numerical examples to demonstrate the effectiveness of proposed method are provided.  相似文献   

17.
In this paper, fault detection and isolation (FDI) in linear uncertain dynamic systems is addressed. The main contributions consist of the formulation of the FDI problem as a filter-based multi-objective optimization problem and the study of the tools used for the solution. The design objectives are formulated in terms of H, H- and generalized H2 performance specifications as well as regional constraints on filter poles. The problem is solved using linear matrix inequality (LMI) and generalized structured singular value (μg) techniques. Special design features are illustrated through a simulation example and experimental results from a controlled hydraulic process are provided to demonstrate the potential of the proposed procedure.  相似文献   

18.
This paper is concerned with the reliable event-triggered H output control of nonlinear systems with actuator faults. A dynamic triggering scheme depending on system outputs is implemented to reduce the amount of communication transmissions, which is different from existing constant triggering thresholds. The parameters of actuator faults are estimated via observer state. To compensate for the fault effects on systems, the reliable controller parameters are adjusted along with the obtained estimations. By using some technical lemmas, new sufficient conditions for the closed-loop system to be asymptotically stable with prescribed H performance are formed in linear matrix inequalities. Lastly, simulations are implemented to demonstrate the validity of the proposed method.  相似文献   

19.
This paper considers the stability and L2-gain for a class of switched neutral systems with time-varying discrete and neutral delays. Some new delay-dependent sufficient conditions for exponential stability and weighted L2-gain are developed for a class of switching signals with average dwell time. These conditions are formulated in terms of linear matrix inequalities (LMIs) and are derived by employing free weighting matrices method. As a special case of such switching signals, we can obtain exponential stability and normal L2-gain under arbitrary switching signals. Finally, two numerical examples are given to illustrate the effectiveness of the theoretical results.  相似文献   

20.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号