首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Data transmission via optical fiber is a new discipline of communication theory. The principal difference from conventional baseband data transmission, which is characterized by a signal independent additive Gaussian noise, is the existence of a signal dependent shot noise.This paper presents a technique for estimating the error probability performance of digital systems with inter-symbol interference and signal dependent additive noise. For binary antipodal (±1) systems, the approximate upper bound to the error probability is twice the lower bound. Hence either can be taken as a good approximation to the actual error probability. The technique is then applied to a model of some promising optical data communication systems and a good approximation to the error probability is obtained. Some observations about the effect of various system parameters on the error probability and some numerical examples are presented.  相似文献   

2.
Recently, a new non-uniform sampling digital phase-locked loop, the time-delay digital tanlock loop (TDTL), has been proposed. We have analyzed in a previous work the first- and second-order TDTLs under noise-free conditions. In this work, we analyze the performance of the TDTL in the presence of additive Gaussian noise for different values of the loop parameters. It is shown that the expected value of the steady-state phase errors at the input and the output of the phase error detector are equal to the noise-free steady-state values, while the variance is significantly reduced when the signal-to-noise ratio is increased or the phase shift introduced by the time-delay approaches 90°. The locking ranges of the TDTL parameters under noise-free conditions are unchanged by the presence of noise.  相似文献   

3.
This paper treats the problem of transmitting a Gaussian discrete-time Markov process over a time-discrete additive white Gaussian channel with noiseless feedback which is subjected to statistically unknown jamming noise (satisfying a given power constraint). The channel is used more than once during the interval between the production of successive source letters, and the jamming noise is either allowed to be correlated with the encoder output, or forced to be totally independent of it. The complete solution obtained in the paper under a minimax criterion indicates that the optimum encoder-decoder structures are linear,and the least favorable jamming noise is a Gaussian process.  相似文献   

4.
A simple lower bound, an upper bound and a simple approximation to the upper bound on the probability of error for coherent phase-shift-keyed (CPSK) systems operating in the presence of intersymbol interference and additive noise are obtained. The additive noises in the in-phase channel and the quadrature channel are assumed to be independent, and are independent of the signal, but not restricted to be Gaussian. The approximation to the upper bound is four times the lower bound, hence the tightness of these bounds is uniform for all cases. This fact and the simplicity of the bounds make these bounds a useful system design tool. Numerical examples for quaternary and octonary systems are presented and compared to known results.  相似文献   

5.
In this paper we are concerned with the problems of (1) tracking or estimating the unknown, time-varying instantaneous frequency (IF) of a chirp signal from a multi-component signal (we assume our multi-component signal to be formed of additive chirp signals, disjoint in the time–frequency domain, and Gaussian noise) and (2) reconstructing a specific chirp signal based on the estimate of its IF found at (1). The algorithm we developed is based on a previously proposed method adapted now for the case of multi-component signals. It combines an adaptive smoothing procedure with a noise resistant Fourier filter to generate an algorithm with an extremely fine frequency resolution. The method is non-parametric, that is, we assume no prior knowledge about the form of the time-varying IF of the chirp or about the chirp itself. We demonstrate how the method works on simulated data and compare its performance to other presently used procedures.  相似文献   

6.
刘颖  乙万义 《科教文汇》2014,(10):66-67,70
本文根据正交码拚(L,w,λa,1)互相关值的分布,结合信噪比(SIR)与误码率(BER)公式推出码集拚(L,w,λa,1)的码重w的取值范围,在复合函数的增减性基础上给出码重(w)、并发用户(k)与BER之间的关系,最后在误码率小于10-9时给出正交码系统拚(L,w,1)在固定码长L下的优化设计方案,以及系统在K值固定且有码字容量约束的情况下选取的正交地址码方案,并给出了其优化设计对应的数学表达式。  相似文献   

7.
In this paper, we consider the discrete memory-less three-way degraded broadcast channel (3WDBC). The main contribution of this paper is in characterizing the capacity region of the discrete memoryless 3WDBC. To end up with this goal, we first develop the achievable region. Then, an outer bound to the capacity region is also derived. Next, the achievable region is shown to meet the outer bound such that the capacity is achieved. After that, the 3WDBC is shown to encompass many well-known multi-user networks such as (i) broadcast channel, (ii) multiple access channel, (iii) two-way channel, and (iv) relay channel. Further, the achievable capacity region is then extended to the additive Gaussian noise channel. Specifically, superposition encoding is employed at each user such that a given user can appropriately allocate its power to broadcast to the other two users. In this direction, two design criteria are theoretically presented and numerically investigated to show the range that the power allocation factor at each user may have.  相似文献   

8.
A novel space shift keying (SSK) multiple–input multiple–output (MIMO) technique based on Steiner triple system is proposed and analyzed in this article. SSK attracted considerable research interest in the past few years driven by the several promised inherent advantages including low error probability, low computational complexity and a very simple hardware implementation with very low cost and power consumption. Yet, the spectral efficiency of SSK increases with a base two logarithm of the number of transmit antennas and high data rates are only viable with a massive and impractical number of transmit antennas. Alternatively, generalized SSK (GSSK) scheme is considered, where a combination of antennas is activated at each time instant. GSSK promises the use of arbitrary number of transmit antennas not necessarily a power of two integer. Also, GSSK can attain high data rate with low number of transmit antennas at the cost of substantial degradation in the error performance. In this study, a Steiner triple system is utilized to propose a tailored SSK scheme with substantial reduction in the required number of transmit antennas, without compromising the error probability. It is shown that the proposed Steiner–SSK (S–SSK) MIMO system achieves almost identical error performance to a conventional SSK system but with nearly 90% reduction in the number of transmit antennas. As well, the average bit error rate (ABER) of S–SSK is shown to outperform GSSK by at least 3dB. It is also reported that a S–SSK system accomplishes significant reduction in hardware cost, power consumption, and computational complexity as compared to conventional SSK scheme. Yet, GSSK is shown to marginally outperforms S–SSK in these metrics as it requires smaller number of transmit antennas per a target spectral efficiency.  相似文献   

9.
The conventional logarithm cost-based adaptive filters, e.g., the least mean logarithmic square (LMLS) algorithm, cannot combat impulsive noises at the filtering process. To address this issue, we present a novel robust least mean logarithmic square (RLMLS) algorithm by using a generalized logarithmic cost function. The proposed RLMLS algorithm can provide robustness against impulsive noises with the improvement of filtering accuracy. For theoretical analysis, the mean square analysis of RLMLS is provided in terms of the mean square deviation (MSD) and excess mean-square error (EMSE) with a white Gaussian reference. For further performance improvement in different noises, the variable step-size RLMLS (VSSRLMLS) based on the statistics of error is proposed to improve the convergence rate and steady-state mean square error, simultaneously. Analytical results and superiorities of RLMLS and VSSRLMLS in the context of system identification are supported by simulations from the aspects of filtering accuracy and robustness in Gaussian and impulse noises.  相似文献   

10.
In this paper, the achievable tracking performance limitations of discrete-time, multi-input multi-output (MIMO) networked control systems (NCSs) are studied. The channel is modeled as an additive white Gaussian noise and signal-to-noise ratio (SNR) limited channel with feedback. Under this framework, the closed relationships among stabilization, tracking performance, and SNR limited are quantitatively revealed. Some new results a.erived according to the allpass factorization and Youla parameterization of two degrees of freedom controller. The results show that the best tracking performance is in connection with the unstable poles, non-minimum phase zeros of the system. It is also demonstrated that the tracking performance will be badly degraded by feedback channel noise and due to the SNR limited. Finally, a simulation example is presented to validate the conclusions.  相似文献   

11.
Higher-order statistics (HOS) are well known for their robustness to additive Gaussian noise and ability to preserve phase. HOS estimates, on the other hand, have been criticized for high complexity and the need for long data in order to maintain small variance. Since rank reduction offers a general principle for reduction of estimator variance and complexity, we consider the problem of designing low-rank estimators for HOS. We propose three methods for choosing the transformation matrix that reduces the mean-square error (MSE) associated with the low-rank HOS estimates. We also demonstrate the advantages of using low-rank third-order moment estimates for blind system estimation. Results indicate that the full rank MSE corresponding to some data length N can be attained by a low-rank estimator corresponding to a length significantly smaller than N.  相似文献   

12.
Using an acoustic vector sensor (AVS), an efficient method has been presented recently for direction of arrival (DOA) estimation of multiple speech sources via the clustering of the inter-sensor data ratio (AVS-ISDR). Through extensive experiments on simulated and recorded data, we observed that the performance of the AVS-DOA method is largely dependent on the reliable extraction of the target speech dominated time–frequency points (TD-TFPs) which, however, may be degraded with the increase in the level of additive noise and room reverberation in the background. In this paper, inspired by the great success of deep learning in speech recognition, we design two new soft mask learners, namely deep neural network (DNN) and DNN cascaded with a support vector machine (DNN-SVM), for multi-source DOA estimation, where a novel feature, namely, the tandem local spectrogram block (TLSB) is used as the input to the system. Using our proposed soft mask learners, the TD-TFPs can be accurately extracted under different noisy and reverberant conditions. Additionally, the generated soft masks can be used to calculate the weighted centers of the ISDR-clusters for better DOA estimation as compared to the original center used in our previously proposed AVS-ISDR. Extensive experiments on simulated and recorded data have been presented to show the improved performance of our proposed methods over two baseline AVS-DOA methods in presence of noise and reverberation.  相似文献   

13.
多入多出(MIMO)系统在发射端和接收端分别设置多副天线,采用MIMO技术可以提高信道容量和信道可靠性,降低误码率。正交频分复用(OFDM)是一种特殊的多载波传输方案,各子载波在整个符号周期上正交,各子载波信号子频谱可以互相重叠,提高了频带利用率。MIMO-OFDM技术是OFDM与MIMO技术结合形成的一种新技术,该技术是在OFDM传输系统中采用阵列天线实现空间分集,提高了信号质量。本文中全面介绍了MIMO技术和OFDM技术及两者的结合,分析了实现MIMO-OFDM技术的框架,未来的工作是如何用硬件来仿真实现这个系统。  相似文献   

14.
In inertial navigation system and global navigation satellite system (INS/GNSS) integration, the practical stochastic measurement noise may be non-stationary heavy-tailed distribution due to outlier measurements induced by multipath and/or non-line-of-sight receptions of the original GNSS signals. To address the problem, a new switching Gaussian-heavy-tailed (SGHT) distribution is presented, which models the measurement noise with the help of switching between the Gaussian and the an existing heavy-tailed distribution. Then, utilizing two auxiliary parameters satisfying categorical and Bernoulli distributions respectively, we construct the SGHT distribution as a hierarchical Gaussian presentation. Furthermore, applying variational Bayesian inference, a novel SGHT distribution based robust Gaussian approximate filter is derived. Meanwhile, to reduce the computational complexity of the filtering process, an improved fixed-point iteration method is designed. Finally, the simulation of integrated navigation for an aircraft illustrates effectiveness and superiority of the proposed filter as compared the existing robust filters.  相似文献   

15.
In this paper, we address the problem of tracking DOA of multiple moving targets with known signal source waveforms and unknown gains in the presence of Gaussian noise using a nonuniform linear array. Herein, we make use of the fact that the output of each sensor can be described as a linear regression model whose coefficients each contain a pair of DOA and gain information corresponding to one target. These coefficients are determined by solving a linear least squares (LS) problem and then updated recursively based on a block QR decomposition recursive least squares (QRD-RLS) technique or a block regularized LS technique. Since the coefficients from different sensors have the same amplitude but variable phase information for the same signal, along with simple algebraic manipulations the well-known generalized least squares (GLS) are used to obtain an asymptotically-optimal DOA estimate without requiring a search over a large region of the parameter space. Computer simulations show that the proposed DOA tracking techniques when applied to a sparse antenna array can provide a better tracking performance than some of the existing methods do.  相似文献   

16.
The multi-taper spectrum (MTS) estimator enjoys a relatively low computational complexity and high estimation accuracy making it an attractive method for spectrum sensing in cognitive radio (CR) networks. However, it is difficult to guarantee both detection and false alarm probabilities when its design is based on fixed threshold, especially when the noise power fluctuates due to channel conditions. In this paper, a new adaptive threshold method to guarantee both detection and false alarm probabilities for MTS based spectrum sensing is proposed. By means of estimating noise power and signal power, the decision of adaptive threshold is able to adapt the noise fluctuation and achieve efficient trade-off between detection and false alarm probabilities. A closed form expression for the adaptive threshold is derived for both additive white Gaussian noise (AWGN) channel and multipath fading channel. Several metrics are employed to compare the performance of the proposed adaptive threshold method with that of the fixed threshold methods such as: error decision probability, detection probability, false alarm probability and throughput. The obtained results show that the proposed method achieves better spectrum efficiency and high throughput in comparison with the conventional fixed and adaptive threshold methods presented in the literature.  相似文献   

17.
This work studies the problem of kernel adaptive filtering (KAF) for nonlinear signal processing under non-Gaussian noise environments. A new KAF algorithm, called kernel recursive generalized mixed norm (KRGMN), is derived by minimizing the generalized mixed norm (GMN) cost instead of the well-known mean square error (MSE). A single error norm such as lp error norm can be used as a cost function in KAF to deal with non-Gaussian noises but it may exhibit slow convergence speed and poor misadjustments in some situations. To improve the convergence performance, the GMN cost is formed as a convex mixture of lp and lq norms to increase the convergence rate and substantially reduce the steady-state errors. The proposed KRGMN algorithm can solve efficiently the problems such as nonlinear channel equalization and system identification in non-Gaussian noises. Simulation results confirm the desirable performance of the new algorithm.  相似文献   

18.
研究了一种扩谱载波数字脉冲间隔调制SSC—DPIM(Spread spectrum carrier digital pulse interval modulation)技术并用于电力线载波扩谱通信系统.采用线性扫频SSC扩谱载波对DPIM符号进行编码,引入脉冲前导码作为传输数据块的同步信号以防止差错传播.介绍了数据传输速率及数据块传送差错率的理论分析结果.并采用单片机实现了SSC-DPIM电力线载波通信系统.实验结果表明,在同样的电力线网络环境下,其通信效果明显优于已有的电力线载波通信系统。  相似文献   

19.
In this paper, the problem of distributed fault detection and isolation (FDI) is investigated for a class of linear discrete-time stochastic multi-agent systems (MASs) with additive Gaussian white noises. By using the information received from the generalized neighbor agents, a set of residual generators are designed for one agent based on the minimal-order observers. After dividing the MAS into several first-order components, the residuals are designed to be robust to the faults in some designated components and sensitive to the faults in all the other components. Combining with FDI strategies, multiple concurrent faults in the generalized neighbor agents can be detected and isolated simultaneously. In addition, a necessary condition is established for the observer to have the minimum order. By means of the statistical method, a set of hypothesis tests are derived to detect and isolate the faults. Finally, a simulation example is presented to show the feasibility and effectiveness of the proposed methods.  相似文献   

20.
Auto-Regressive-Moving-Average with eXogenous input (ARMAX) models play an important role in control engineering for describing practical systems. However, ARMAX models can be non-realistic in many practical contexts because they do not consider the measurement errors on the output of the process. Due to the auto-regressive nature of ARMAX processes, a measurement error may affect multiple data entries, making the estimation problem very challenging. This problem can be solved by enhancing the ARMAX model with additive error terms on the output, and this paper develops a moving horizon estimator for such an extended ARMAX model. In the proposed method, measurement errors are modeled as nuisance variables and estimated simultaneously with the states. Identifiability was achieved by regularizing the least-squares cost with the ?2-norm of the nuisance variables, which leads to an optimization problem that has an analytical solution. For the proposed estimator, convergence results are established and unbiasedness properties are also proved. Insights on how to select the tuning parameter in the cost function are provided. Because of the explicit modeling of output noise, the impact of a measurement error on multiple data entries can be estimated and reduced. Examples are given to demonstrate the effectiveness of the proposed estimator in dealing with additive output noise as well as outliers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号