首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, an adaptive fuzzy control method is proposed for induction motors (IMs) drive systems with unknown backlash-like hysteresis. First, the stochastic nonlinear functions existed in the IMs drive systems are resolved by invoking fuzzy logic systems. Then, a finite-time command filter technique is exploited to overcome the obstacle of “explosion of complexity” emerged in the classical backstepping procedure during the controller design process. Meanwhile, the effect of the filter errors generated by command filters is decreased by utilizing corresponding error compensating mechanism. To cope with the influence of backlash-like hysteresis input, an auxiliary system is constructed, in which the output signal is applied to compensate the effect of the hysteresis. The finite-time control technology is adopted to accelerate the response speed of the system and reduce the tracking error, and the stochastic disturbance and backlash-like hysteresis are considered to improve control accuracy. It’s shown that the tracking error can converge to a small neighborhood around the origin in finite-time under the constructed controller. Finally, the availability of the presented approach is validated through simulation results.  相似文献   

2.
In this paper, an adaptive finite-time funnel control for non-affine strict-feedback nonlinear systems preceded by unknown non-smooth input nonlinearities is proposed. The input nonlinearities include backlash-like hysteresis and dead-zone. Unknown nonlinear functions are handled using fuzzy logic systems (FLS), based on the universal approximation theorem. An improved funnel error surface is utilized to guarantee the steady-state and transient predetermined performances while the differentiability problem in the controller design is averted. Using the Lyapunov approach, all the adaptive laws are extracted. In addition, an adaptive continuous robust term is added to the control input to relax the assumption of knowing the bounds of uncertainties. All the signals in the closed-loop system are shown to be semi-globally practically finite-time bounded with predetermined performance for output tracking error. Finally, comparative numerical and practical examples are provided to authenticate the efficacy and applicability of the proposed scheme.  相似文献   

3.
In this paper, we develop an approach for solving the problem of sliding mode decentralized adaptive state-feedback tracking with continuous control actions for a class of uncertain nonlinear dynamical systems. In addition to the traditional asymptotic zero error tracking specification in the sliding mode decentralized model reference adaptive control (MRAC) problem formulation, here an additional requirement is specified explicitly in the problem statement. The tracking objective is described by a set of admissible reference trajectories, called a performance tube. The input signal to the reference model, selected within specified bounds, is used as a design parameter. The best reference trajectory is found by solving an additional optimization problem whose criterion penalizes the variance of the control signal.  相似文献   

4.
This study focuses on the research of the globally asymptotic tracking problem of unknown nonlinear reaction-diffusion equations with time-varying coefficients and uncertain external disturbance. Firstly, fuzzy logic systems and adaptive bounding technique are used to deal with nonlinear reaction-diffusion equations with time-varying coefficients and uncertain external disturbance. Secondly, a novel global state feedback adaptive fuzzy control algorithm is proposed to make the nonlinear reaction-diffusion equations track the target systems globally and asymptotically. In addition, the globally asymptotic tracking condition can be obtained, which overcomes the semi-global results in the existing literatures. Finally, three simulation examples are given to illustrate the feasibility and effectiveness of the proposed control protocols.  相似文献   

5.
In this paper, the problem of adaptive tracking control is investigated for nonlinear systems with asymmetric actuator backlash. We assume that the nonlinearities of the systems are unknown and the external disturbances are bounded. First, the control input will be quantized by a hysteresis-type quantizer, which can reduce the communication rate of the control signal. Then, the asymmetric actuator backlash is approximated to a new model, and a novel adaptive controller with the quantizer is designed via an adaptive backstepping technique to guarantee all the signals of the closed-loop tracking error system are uniform ultimate boundedness. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed algorithm.  相似文献   

6.
In this paper, the problem of active fault tolerant control for a reusable launch vehicle (RLV) with actuator fault using both adaptive and sliding mode techniques is investigated. Firstly, the kinematic equations and dynamic equations of RLV are given, which represent the characteristics of RLV in reentry flight phase. For the dynamic model of RLV in faulty case, a fault detection scheme is proposed by designing a nonlinear fault detection observer. Then, an active fault tolerant tracking strategy for RLV attitude control systems is presented by making use of both adaptive control and sliding mode control techniques, which can guarantee the asymptotic output tracking of the closed-loop attitude control systems in spite of actuator fault. Finally, simulation results are given to demonstrate the effectiveness of the developed fault tolerant control scheme.  相似文献   

7.
This article investigates the adaptive regulation problem of uncertain delayed nonlinear systems. Remarkably, the systems have multiple delays in systems’ states and the input, and the nonlinear terms as a whole can belong to one of four different growing conditions. By introducing the dynamic-gain-based transformations, we obtain the new dynamic systems. By using homogeneous domination method, adaptive regulation strategy and by flexibly selecting the dynamic gain, two unified adaptive control methods are presented such that the obtained systems are globally asymptotic stable. Simulation results verify the effectiveness of the methods of this paper.  相似文献   

8.
In this paper, an asymptotic adaptive dynamic surface tracking control strategy is investigated for uncertain full-state constrained nonlinear systems subject to parametric uncertainties and external disturbances. A novel disturbance estimator (DE) is firstly used to compensate for external disturbances. The parametric uncertainties are accordingly handled via a synthesized adaptive law. Then, by using the barrier Lyapunov function (BLF) and dynamic surface control (DSC), an appropriate backstepping design framework employing a novel adaptive-gain nonlinear filter is given, which avoids the “explosion of complexity” and relieves the conservatism of filter gain selection. The theoretical analysis reveals the asymptotic tracking performance is assured with the proposed controller. In the end, some simulation cases demonstrate the validity of the proposed controller.  相似文献   

9.
This paper investigates the tracking control problem for output constrained stochastic nonlinear systems under quantized input. The main challenge of considering such dynamics lies in the fact that theirs have both input and output constraints, making the standard backstepping technique fail. To address this challenge, the introduction of nonlinear mapping transforms the constrained nonlinear systems into unconstrained nonlinear systems, which not only avoids the emergence of feasibility conditions but also simplifies the structure of designed controller. The obstacle caused by quantized input is successfully resolved by exploiting the decomposition of hysteresis quantizer. Additionally, the uncertain nonlinearities are approximated by fuzzy logic systems during the control design process. Under the proposed quantized tracking control scheme, the output tracking error converges to an arbitrarily small neighborhood of origin and all signals in the closed-loop system remain bounded in probability. Simultaneously, it can make sure that the output constraint isn’t violated. Ultimately, both a numerical example and a practical example are provided to clarify the effectiveness of the control strategy.  相似文献   

10.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

11.
This paper presents a simplified design methodology for robust event-driven tracking control of uncertain nonlinear pure-feedback systems with input quantization. All nonlinearities and quantization parameters are assumed to be completely unknown. Different from the existing event-driven control approaches for systems with completely unknown nonlinearities, the main contribution of this paper is to design a simple event-based tracking scheme with preassigned performance, without the use of adaptive function approximators and adaptive mirror models. It is shown in the Lyapunov sense that the proposed event-driven low-complexity tracker consisting of nonlinearly transformed error surfaces and a triggering condition can achieve the preselected transient and steady-state performance of control errors in the presence of the input quantization.  相似文献   

12.
This article considers the nonlinear time-delay system with full-state constrains and actuator hysteresis. Compared with the previous research on input hysteresis phenomenon, all states in the system are required to be constrained in a bounded compact set and the direction of hysteresis is unknown. Thus, the system is difficult to be stabilized and get perfect error tracking performance, and the design procedure is more complicated. By combining barrier Lyapunov functions (BLFs) and Nussbaum functions, a new virtual controller is designed, which combines the properties of Nussbaum function with fuzzy logic systems (FLSs). Furthermore, considering that the rate-dependent characteristic of actuator hysteresis will adversely affect the stability of networked control systems (NCSs), a first-order filter is used to solve the problem, but it brings challenges to the design of Lyapunov–Krasovskii functions (KLFs). Thus, a new LKFs is constructed to compensate for the adverse effects of state delay on the nonlinear system. What’s more, this article propose event-triggered technique to solve the coupling effect of the system communication resource constrains. The proposed adaptive control strategy ensures the boundedness of all signals and does not violate the state constraints, and the controller avoids Zeno behavior, and the tracking error fluctuates around zero in a predetermined compression range. Finally, two simulations results verify the effectiveness of the adaptive control strategy.  相似文献   

13.
The adaptive asymptotic tracking control problem for a class of stochastic non-strict-feedback switched nonlinear systems is addressed in this paper. For the unknown continuous functions, some neural networks are used to approximate them online, and the dynamic surface control (DSC) technique is employed to develop the novel adaptive neural control scheme with the nonlinear filter. The proposed controller ensures that all the closed-loop signals remain semiglobally bounded in probability, at the same time, the output signal asymptotically tracks the desired signal in probability. Finally, a simulation is made to examine the effectiveness of the proposed control scheme.  相似文献   

14.
This paper investigates the problem of asymptotic tracking control of nonlinear robotic systems with prescribed performance. The control strategy is developed based on a modified prescribed performance function (PPF) to guarantee the transient behavior, while the requirements on the accurate initial tracking error in the classical PPF can be remedied. The fuzzy logic system (FLS) is used to approximate the unknown dynamics. In the existing PPF based adaptive control schemes with FLSs, the tracking error does not achieve asymptotic convergence. To address this issue, a robust integral of the sign of the error (RISE) term is incorporated into the control design to reject the FLS approximation errors and external disturbances, such that the asymptotic convergence is achieved. Finally, numerical simulation and experimental results validate the effectiveness of the proposed control scheme.  相似文献   

15.
The tracking problem of high-order nonlinear multi-agent systems (MAS) with uncertainty is solved by designing adaptive sliding mode control. During the tracking process, node failures are possible to occur, a new agent replaces the failed one. Firstly, a distributed nonsingular terminal sliding mode(NTSM) control scheme is designed for the tracking agents. A novel continuous function is designed in the NTSM to eliminate the singularity and meanwhile guarantee the estimation of finite convergence time. Secondly, the unknown uncertainties in the tracking agents are compensated by proposing an adaptive mechanism in the NTSM. The adaptive mechanism adjusts the control input through estimating the derivative bound of the unknown uncertainties dynamically. Thirdly, the tracking problem with node failures and agent replacements is further investigated. Based on the constructed impulsive-dependent Lyapunov function, it is proved that the overall system will track the target in finite time even with increase of jump errors. Finally, comparison simulations are conducted to illustrate the effectiveness of proposed adaptive nonsingular terminal sliding mode control method for tracking systems suffering node failures.  相似文献   

16.
When the Preisach operator, a commonly used hysteresis model, is coupled with uncertain unparametrizable nonlinear dynamics of systems, its tracking control problem in particular with the demands for prescribed tracking accuracy and finite convergence time is challenging, and has not yet been solved in the existing literature. In this study, we focus on the problem, and develop a fixed-time adaptive fuzzy control scheme as a solution to it, based upon a novel decomposition of the Preisach model, the design of a robust control framework, and the integration of a direct adaptive fuzzy control approach. With our scheme, it can be rigorously proved that the tracking error goes to a predefined interval around zero in a bounded convergence time, and all signals in the closed-loop system are bounded. Besides theoretical analysis, the obtained results are also confirmed by experimental tests based on a real-life piezoactuated positioner.  相似文献   

17.
For a class of switched nonlinear systems with unmatched external disturbances and unknown backlash-like hysteresis, an adaptive fuzzy-based control strategy is proposed to handle the anti-disturbance issue. The unmatched external disturbances come from a switched exosystem. Our aim is to achieve the output tracking performance and the disturbance attenuation by using the adaptive fuzzy-based composite anti-disturbance control technique. First, based on the fuzzy logics, we design a switching adaptive fuzzy disturbance observer to estimate unmatched external disturbances. Second, a composite switching adaptive anti-disturbance controller is constructed. By means of the backstepping technique, disturbance estimations are added in each virtual control to offset the unmatched disturbances, which results in the different coordinate transformations. At last, the availability of the proposed approach is illustrated by a mass-spring-damper system.  相似文献   

18.
This paper develops an adaptive actuator failure compensation scheme for control of a class of nonlinear multi-input–multi-output systems with redundant actuators subject to uncertain failures. The design method is to estimate the failure pattern parameters and the failure signal parameters first, and then use the parameter estimates to construct the adaptive failure compensation controller, the control law calculation is done simultaneously with parameter estimation without explicit failure detection. Closed-loop signal boundedness and asymptotic output tracking, despite the actuator failure uncertainties, are ensured analytically and verified by simulation results from its application to attitude control of a near space vehicle dynamic model.  相似文献   

19.
The attitude tracking control problem of a spacecraft nonlinear model with external disturbances and inertia uncertainties is addressed in this paper. First, a new sliding mode controller is designed to ensure the asymptotic convergence of the attitude and angular velocity tracking errors against external disturbances and inertia uncertainties by using a modified differentiator to estimate the total disturbances. Second, an adaptive algorithm is applied to compensating the disturbances, by which another sliding mode controller is successfully designed to achieve a high performance on the attitude tracking in the presence of the inertia uncertainties, external disturbances and actuator saturations. Finally, simulation results are presented to illustrate effectiveness of the control strategies.  相似文献   

20.
In classical model reference adaptive control (MRAC), the adaptive rates must be tuned to meet multiple competing objectives. Large adaptive rates guarantee rapid convergence of the trajectory tracking error to zero. However, large adaptive rates may also induce saturation of the actuators and excessive overshoots of the closed-loop system’s trajectory tracking error. Conversely, low adaptive rates may produce unsatisfactory trajectory tracking performances. To overcome these limitations, in the classical MRAC framework, the adaptive rates must be tuned through an iterative process. Alternative approaches require to modify the plant’s reference model or the reference command input. This paper presents the first MRAC laws for nonlinear dynamical systems affected by matched and parametric uncertainties that constrain both the closed-loop system’s trajectory tracking error and the control input at all times within user-defined bounds, and enforce a user-defined rate of convergence on the trajectory tracking error. By applying the proposed MRAC laws, the adaptive rates can be set arbitrarily large and both the plant’s reference model and the reference command input can be chosen arbitrarily. The user-defined rate of convergence of the closed-loop plant’s trajectory is enforced by introducing a user-defined auxiliary reference model, which converges to the trajectory tracking error obtained by applying the classical MRAC laws before its transient dynamics has decayed, and steering the trajectory tracking error to the auxiliary reference model at a rate of convergence that is higher than the rate of convergence of the plant’s reference model. The ability of the proposed MRAC laws to prescribe the performance of the closed-loop system’s trajectory tracking error and control input is guaranteed by barrier Lyapunov functions. Numerical simulations illustrate both the applicability of our theoretical results and their effectiveness compared to other techniques such as prescribed performance control, which allows to constrain both the rate of convergence and the maximum overshoot on the trajectory tracking error of uncertain systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号