首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper investigates the tracking control problem for output constrained stochastic nonlinear systems under quantized input. The main challenge of considering such dynamics lies in the fact that theirs have both input and output constraints, making the standard backstepping technique fail. To address this challenge, the introduction of nonlinear mapping transforms the constrained nonlinear systems into unconstrained nonlinear systems, which not only avoids the emergence of feasibility conditions but also simplifies the structure of designed controller. The obstacle caused by quantized input is successfully resolved by exploiting the decomposition of hysteresis quantizer. Additionally, the uncertain nonlinearities are approximated by fuzzy logic systems during the control design process. Under the proposed quantized tracking control scheme, the output tracking error converges to an arbitrarily small neighborhood of origin and all signals in the closed-loop system remain bounded in probability. Simultaneously, it can make sure that the output constraint isn’t violated. Ultimately, both a numerical example and a practical example are provided to clarify the effectiveness of the control strategy.  相似文献   

2.
This paper is concerned with the optimal stealthy attack problems of cyber-physical system, which is represented as discrete-time linear systems. It is considered that a deceptive attack assumed to be able to hijack and modify the nominal control signals from the controller-actuator channel with the metric of ? -stealthiness. Different from the existing literatures, some optimal attack strategies with objectives such that maintaining a fixed level of stealthiness and achieving the maximized performance degradation are designed under some constraints. It is further derived that the results of ours are more relaxed than some methods proposed before. Finally, some numerical simulations are given to illustrate the validity of the theoretical results.  相似文献   

3.
This article focuses on the adaptive event-triggered output feedback stabilization problem for a class of high-order systems with uncertain output function. Firstly, an adaptive event-triggered mechanism with a dynamic gain is designed for the nominal system. Then the gain is employed into the observer and event-triggered controller to dominate the nonlinearities. Thirdly, it is proved that all system states converge to zero and the Zeno-behavior is excluded. Finally, a numerical example reveals the effectiveness of the proposed event-triggered control strategy.  相似文献   

4.
This paper focuses on the problem of adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Radial basis function neural networks (NNs) are employed to approximate the unknown functions and an NN observer is constructed to estimate the unmeasurable system states. Moreover, an auxiliary system is introduced to compensate for the effect of input delay. With the aid of the backstepping technique and Lyapunov stability theorem, an adaptive NN output feedback controller is designed which can guarantee the boundedness of all the signals in the closed-loop systems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

5.
This paper investigates an adaptive prescribed performance control strategy with specific time planning for trajectory tracking of robotic manipulator subject to input constraint and external disturbances. By constructing an accumulated error vector embedded with a performance enhancement function and introducing an input auxiliary function, a specified-time control framework with built-in prescribed performance is further designed to ensure that the trajectory tracking performance. More particularly, the proposed control law is compatible with the control input saturation suppression algorithm, which is capable of improving the robustness of closed loop system. Under the framework of the proposed control strategy, it is proved by theory that all the signals in the closed-loop system are bounded, and moreover the tracking error can reach the exact convergence domain in a given time. At last, a numerical example is presented to indicate the feasibility and effectiveness of the proposed method.  相似文献   

6.
This paper proposes an observer-based fuzzy adaptive output feedback control scheme for a class of uncertain single-input and single-output (SISO) nonlinear stochastic systems with quantized input signals and arbitrary switchings. The SISO system under consideration contains completely unknown nonlinear functions, unmeasured system states and quantized input signals quantized by a hysteretic quantizer. By adopting a new nonlinear disposal of the quantized input, the relationship between the control input and the quantized input is established. The hysteretic quantizer that we take can effectively avoid the chattering phenomena. Furthermore, the introduction of a linear observer makes the estimation of the states possible. Based on the universal approximation ability of the fuzzy logic systems (FLSs) and backstepping recursive design with the common stochastic Lyapunov function approach, a quantized output feedback control scheme is constructed, where the dynamic surface control (DSC) is explored to alleviate the computation burden. The proposed control scheme cannot only guarantee the boundedness of signals but also make the output of the system converge to a small neighborhood of the origin. The simulation results are exhibited to demonstrate the validity of the control scheme.  相似文献   

7.
The problem of decentralized adaptive control is investigated for a class of large-scale nonstrict-feedback nonlinear systems subject to dynamic interaction and unmeasurable states, where the dynamic interaction is related to both input and output items. First, the fuzzy logic system is utilized to tackle unknown nonlinear function with nonstrict-feedback structure. Then, by combining adaptive and backstepping technology, the proper output feedback controller is designed. Meanwhile, a fuzzy state observer is proposed to estimate the unmeasurable states. The proposed controller could guarantee that all the signals of the resulting closed-loop systems are bounded. Finally, the applicability of the proposed controller is well carried out by a simulation example.  相似文献   

8.
An unknown input observer is to estimate the system state of a dynamic system subject to unknown input excitations. In this note, by assuming that at each time instant, the unknown input can be approximated by a polynomial over a local time interval, a finite-time observer is proposed to achieve approximate joint state and input estimation. Both the obtained state and input estimates are moving averages of the present and past output signals. The advantage of the proposed design is that it can be applied to non-minimum phase systems or systems with non-unity relative degree. Notice that most previous unknown input observer designs require the system to be minimum-phase and relative degree one.  相似文献   

9.
In this paper, global practical tracking is investigated via output feedback for a class of uncertain nonlinear systems subject to unknown dead-zone input. The nonlinear systems under consideration allow more general growth restriction, where the growth rate includes unknown constant and output polynomial function. Without the precise priori knowledge of dead-zone characteristic, an input-driven observer is designed by introducing a novel dynamic gain. Based on non-separation principle, a universal adaptive output feedback controller is proposed by combining dynamic high-gain scaling approach with backstepping method. The controller proposed guarantees that the closed-loop output can track any smooth and bounded reference signal by any small pre-given tracking error, while all closed-loop signals are globally bounded. Finally, simulation examples are given to illustrate the effectiveness of our dynamic output feedback control scheme.  相似文献   

10.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

11.
This paper is concerned with the problem of adaptive disturbance attenuation for a class of nonlinear systems. The traditional adaptive methods are almost impossible to compensate the time-varying unknown disturbance by designing parameter adaptive laws without a priori knowledge about the bounds of external disturbances. To solve the problem, a new strategy is proposed by constructing an augmented system where the external disturbance is considered as another component of the augmented state vector. Based on this, a double-gain nonlinear observer is employed to estimate the state of the augmented nonlinear system. Further, an output feedback control strategy is designed, and it is proved that the proposed strategy ensures that all the signals are bounded and the tracking error exponentially converges to an adjustable compact set. Finally, an example is performed to demonstrate the validity of the proposed scheme.  相似文献   

12.
This paper proposes a frequency-based approach for the detection of replay attacks affecting cyber-physical systems (CPS). In particular, the method employs a sinusoidal signal with a time-varying frequency (authentication signal) into the closed-loop system and checks whether the time profile of the frequency components in the output signal are compatible with the authentication signal or not. In order to carry out this target, the couplings between inputs and outputs are eliminated using a dynamic decoupling technique based on vector fitting. In this way, a signature introduced on a specific input channel will affect only the output that is selected to be associated with that input, which is a property that can be exploited to determine which channels are being affected. A bank of band-pass filters is used to generate signals whose energies can be compared to reconstruct an estimation of the time-varying frequency profile. By matching the known frequency profile with its estimation, the detector can provide the information about whether a replay attack is being carried out or not. The design of the signal generator and the detector are thoroughly discussed, and an example based on a quadruple-tank process is used to show the application and effectiveness of the proposed method.  相似文献   

13.
This paper is concerned with the asymptotic stabilization of discrete singular systems over a bandwidth limited digital network, when the state measurements are periodically sampled and encoded using a finite alphabet, and the control input signals are subject to finite-alphabet encoding and Denial-of-Service attacks. It is assumed that the attack signals are uniform for all sampling periods and have been identified. A dynamic controller is designed based on a restricted equivalent model of the controlled plant. Two types of finite-level quantizers are designed for encoding: uniform and logarithmic. For both types of quantizers, dynamic encoding-decoding strategies for the plant state and the control input are proposed, which exploit the controller’s state and the origin, respectively, as the quantization centers. Sufficient conditions for asymptotic stabilizability involving the sampling period, the numbers of the state and input quantization levels, the beginning time and corresponding duration of the attack signals are established by propagating reachable sets during sampling interval. Finally, several numerical examples are given to illustrate the design procedures and the efficacy of the theoretical results.  相似文献   

14.
In this paper, an adaptive distributed control protocol is proposed for non-affine multi-agent system with nonlinear dead-zone input and state constraints under the condition of directed topology. In order to overcome the difficulties caused by non-affine terms in the system, the nonlinear dynamics system is transformed. Then, the neural network technology is introduced to approximate the unknown non-affine terms for the obtained system. State constraints and dead-zone input are common system problems. In order to solve these problems, the barrier Lyapunov function is introduced in this paper. According to the barrier Lyapunov function and backstepping method, an adaptive distributed controller is designed, so that state variables do not violate constraint bounds and the system is not affected by dead-zone input. By Lyapunov stability theory, it is proved that the signals of each follower are cooperative semi-global uniform ultimate boundedness (CSUUB), and the outputs of the followers track the output of the leader. Simulation example is given to demonstrate the effectiveness of the proposed method.  相似文献   

15.
The problem of a grouped multiple missiles cooperative attack on multiple high maneuvering targets with a limited driving force is achieved by an anti-saturation fixed-time grouped cooperative guidance (FxTCG) law based on a sliding mode fixed-time disturbance observer (SM-FxTDO) in this study. First, the state estimation of each high maneuvering target within a fixed time is achieved by designing a sliding mode fixed-time disturbance observer. Second, the group cooperative guidance law is designed by using fixed-time theory, which can ensure the group consensus of multiple missiles strike times within a fixed time under the condition of input saturation. Then, the fixed time stability of the multi-missiles system is proven by using the bi-limit homogeneous theory and the Lyapunov function. Finally, the simulation results show the superiority of the designed observer and cooperative guidance law. The proposed observer can more effectively and accurately estimate the state of the high maneuvering target than the ESO. The proposed cooperative guidance law expands the number of attack targets and makes each group of multiple missiles attack the corresponding high maneuvering target under the conditions of an input saturation within a fixed time compared to the single-target cooperative law.  相似文献   

16.
This paper deals with the output consensus problem for uncertain nonstrict-feedback leader-follower multi-agent systems with predefined performance. A distributed event-triggered control strategy with dynamic threshold is proposed to update the actual control input and alleviate the computation burden of the communication procedure effectively. The unknown nonstrict-feedback structures are addressed by using the property of radial basis function neural networks. It is worth noting that in practical applications, the predefined performance often alternates between constrained and unconstrained cases in some extreme situations. To overcome this challenge, a novel coordinate transformation technique is incorporated to tackle both the two cases with and without performance constraint in a unified manner. As a result, the proposed event-triggered control approach ensures that the output consensus errors converge to zero asymptotically, and all the signals in the closed-loop system are bounded. Finally, the effectiveness of the proposed protocol is demonstrated by the simulation results.  相似文献   

17.
针对日益迫近的智能制造发展需求,运用投入产出分析工具,构建智能制造系统的成本函数和生产函数,分解、剖析智能制造系统的投入产出膨胀特征;对比智能制造系统和传统制造系统的投入产出差异,揭示智能制造系统的投入产出双爆炸效应。基于投入产出双爆炸效应,提出智能制造系统的公共化建造与使用策略,运用具体案例进行验证分析,据此推动智能制造系统加速进入实用阶段。  相似文献   

18.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

19.
In this paper, a sliding-mode-based robust controller is proposed for the single channel thrust vector system (TVC) to suppress the disturbances and improve the tracking performance. Specifically, the dead-zone input–output relationship is analyzed to depict the mount gap in the mechanical shaft. The system mathematic representation including the mechanical and electrical sections, which suffers from the dead-zone nonlinearity, frictions and unstructured disturbance, is constructed. An adaptive-fuzzy-based observer is developed to estimate and compensate the disturbances because the fuel combustion dynamic and frictions in TVC are inevitable but difficult to obtain the precise dynamic state. Based on the nominal model, a robust controller is designed via the sliding-mode variable structure approach, which is derived in the sense of Lyapunov stability theorem. Instead of the traditional hitting law in the sliding mode controller, the chattering problem due to the discontinuous switch law is addressed by a continuous function. In the end, various illustrative examples are provided to demonstrate the effectiveness of the designed method.  相似文献   

20.
In this paper, a novel backstepping-based adaptive dynamic programming (ADP) method is developed to solve the problem of intercepting a maneuver target in the presence of full-state and input constraints. To address state constraints, a barrier Lyapunov function is introduced to every backstepping procedure. An auxiliary design system is employed to compensate the input constraints. Then, an adaptive backstepping feedforward control strategy is designed, by which the tracking problem for strict-feedback systems can be reduced to an equivalence optimal regulation problem for affine nonlinear systems. Secondly, an adaptive optimal controller is developed by using ADP technique, in which a critic network is constructed to approximate the solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. Therefore, the whole control scheme consists of an adaptive feedforward controller and an optimal feedback controller. By utilizing Lyapunov's direct method, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded (UUB). Finally, the effectiveness of the proposed strategy is demonstrated by using a simple nonlinear system and a nonlinear two-dimensional missile-target interception system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号