首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the rapidly increasing penetration level of power generated by large scale photovoltaic (PV) units into the power systems, the effect of the variable output power of the PV unit on the stability of the system cannot be ignored. This paper presents a mathematical approach to study the effect of high infiltration of PV power plant on the small signal stability of a power network and design of optimal fractional order PID (PIλDμ) controller for improving the probabilistic small signal stability of the power systems, taking into consideration the uncertainty of system operating conditions. Due to the probabilistic characteristics of large scale PV power generation, deterministic analysis approaches are not able to fully reveal the impact of high-level PV penetration. At first, this work introduces the main module and mathematical modeling of the large scale PV generation jointly with the single-machine infinite-bus power system. In the following, the paper proposes an efficient method that tunes power system stabilizer (PSS) to have the robustness for damping electro-mechanical oscillations in power systems with incorporated random PV power. For this reason, a robust PSS based on hybridization of PIλDμ controller and Non-dominated Sorting Genetic Algorithm (NSGAII) is designed. This paper targets at finding the optimal gain scheduling of the PIλDμ through the use of the advanced heuristic optimization technique with two objective functions in PV-grid connected systems. The performance of the proposed NSGAII-based PIλDμ controller (NSGAII- PIλDμ) under different solar irradiation, temperature conditions and disturbances is tested. Simulation results illustrate that the model presented can be used in designing of essential controllers for large scale PV power plant.  相似文献   

2.
This paper deals with the load frequency control problem of multi-area power system with doubly-fed-induction-generator-based wind farm. An area-based event-triggered (ET) sliding mode control scheme is proposed to restore the nominal frequency by transmitting less information. The main feature of area-based ET scheme is that each area will transmit its states information to the controller independently via its own triggering mechanism. By flexibly selecting triggering thresholds, the area-based ET scheme can meet the unbalanced network resources among different areas. Meanwhile, the designed sliding mode controller can effectively suppress the fast fluctuation resulting from load and wind generation to achieve frequency restoration and maintain the tie-line power at its scheduled value. The optimization algorithm on the sufficient conditions is given. Finally, the proposed control scheme is illustrated via a three-area power system and IEEE 39-bus system.  相似文献   

3.
In the rapidly expanding size and complexity of the electricity network, automatic generation control (AGC) is contemplated to be the most remarkable option for offering good quality electric power supply to the end users. An AGC system entails highly vigorous, competent and intelligent control technique to deliver a healthy power under stochastic nature of consumers’ power demand. Hence, in this paper, a hybrid fuzzy fractional order proportional integral-fractional order proportional derivative (FFOPI-FOPD) controller is proposed as a new expert control technique to tackle AGC profitably in isolated and interconnected multi-area power systems. A recently developed imperialist competitive algorithm (ICA) is utilized for the optimization of the output gains (KP/KP1/KI/KD) and other parameters such as order of integrator (λ) and differentiator (μ) of FFOPI-FOPD controller exercising integral of squared error criterion. The proposed technique is firstly implemented on 1-area thermal system, then to express its potential and extensibility, the work is extended to 2-area hydro-thermal and 3-area thermal power systems widespread in the literature. The eminence of the method is betokened by comparing the results with the various newly published control methodologies and FPI/FFOPI controller designed in the study via ICA in terms of minimum values of various error criteria and undershoots/overshoots/settling times of frequency and tie-line power deviations following a sudden load demand in an area. The sensitivity analysis substantiates that the suggested controller is robust and performs staunchly under the wide variations in the system parameters, random load pattern and in the company of physical constraints to produce more clean electricity.  相似文献   

4.
《Journal of The Franklin Institute》2019,356(17):10514-10531
This paper investigates the event-based tracking control for delta-sampling systems with a reference model. Takagi–Sugeno (T–S) fuzzy model is used to approximate the nonlinearity. The delta operator is used to implement the discrete-time system. The event trigger is adopted for saving the network resources and the controller forces, and its detection period is designed with the same period of the delta-sampling period. Since the measurement is delayed from the sensor to the event-trigger, the methodology of time-delay systems, called the scaled small gain theorem, is applied for the system stability analysis. The reference output tracking controller is designed to ensure the stability of the resulting system in H sense. The optimization conditions of the desired H event-based tracking controller are synthesized, and the simulation example validates its effectiveness finally.  相似文献   

5.
The optimal location of a static synchronous compensator (STATCOM) and its coordinated design with power system stabilizers (PSSs) for power system stability improvement are presented in this paper. First, the location of STATCOM to improve transient stability is formulated as an optimization problem and particle swarm optimization (PSO) is employed to search for its optimal location. Then, coordinated design problem of STATCOM-based controller with multiple PSS is formulated as an optimization problem and optimal controller parameters are obtained using PSO. A two-area test system is used to show the effectiveness of the proposed approach for determining the optimal location and controller parameters for power system stability improvement. The nonlinear simulation results show that optimally located STATCOM improves the transient stability and coordinated design of STATCOM-based controller and PSSs improve greatly the system damping. Finally, the coordinated design problem is extended to a four-machine two-area system and the results show that the inter-area and local modes of oscillations are well damped with the proposed PSO-optimized controllers.  相似文献   

6.
The access of distributed generation (DG) and a large number of electric vehicles (EVs) have changed the operation mode of power system. Its reliability and stability are facing more and more challenges. Therefore, it is very important to accurately estimate the state of the power system. This paper discusses a new power system state estimation method that is based on the shuffled frog leaping pigeon-inspired optimization algorithm (SFL-PIOA). Firstly, establish EV charging load model and distributed generation probability model (including photovoltaic power generation and wind power generation). Then, considering EVs and DG, the state estimation model of the new power system is built. The objective function and constraint conditions are established, and then the improved SFL-PIOA is used to solve the model. Finally, a simulation example is given to compare the improved algorithms (SFL-PIOA) to initial algorithm (PIOA). The results verify the feasibility and effectiveness of the improved method.  相似文献   

7.
This paper is aimed to investigate the operating characteristics of a static synchronous compensator (STATCOM) integrated with superconducting magnetic energy storage (SMES) for high power applications in the transmission network level. The STATCOM controller topology comprises multi-level multi-pulse neutral-point clamped-type (NPC) voltage source inverters (VSIs) using the harmonics cancellation technique, and incorporates a SMES coil. An innovative two-quadrant multi-level dc-dc converter is proposed to effectively interface the STATCOM with the superconducting coil using a buck-boost topology with neutral point voltage control capabilities; thus enabling to simultaneously control both active and reactive power exchange with the high voltage power system. A detailed analysis of major system variables is presented, including analytical results and digital simulations using the MATLAB/Simulink environment. Moreover, a three-level control scheme is designed, including a full decoupled current control strategy in the d-q reference frame with a novel controller to prevent the STATCOM dc bus capacitors voltage drift/imbalance and an enhanced power system frequency controller.  相似文献   

8.
This paper introduces a new load frequency control (LFC) model in the presence of high wind power penetration level. The main issue in a wind-penetrated power system is to maintain the system frequency in a normal operating band which is specified by the given system grid codes. Essentially, the power system equilibrium point changes following a contingency, and in this case, the high penetration of wind farms makes it harder to regain an acceptable system equilibrium points through conventional control applications. In order to overcome the aforesaid problem, a new Fuzzy-logic controller is designed optimally in this paper using the artificial bee colony (ABC) algorithm. In this approach, the ABC algorithm tunes the membership function parameters of the Fuzzy controller to acquire a good-enough performace of the proposed strategy. More importantly, the proposed Fuzzy-logic controller is blessed with robustness, simplicity, and reliability in order to ameliorate the frequency deviation. It is worth saying that the stability analysis is presented in this paper as well as the noise analysis of the proposed method. The research results indicates how effectively wind farm could participate in the system frequency control through inertial control, primary frequency control, and supplementary frequency control.  相似文献   

9.
This article presents a novel tuning design of Proportional-Integral-Derivative (PID) controller in the Automatic Voltage Regulator (AVR) system by using Cuckoo Search (CS) algorithm with a new time domain performance criterion. This performance criterion was chosen to minimize the maximum overshoot, rise time, settling time and steady state error of the terminal voltage. In order to compare CS with other evolutionary algorithms, the proposed objective function was used in Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) algorithms for PID design of the AVR system. The performance of the proposed CS based PID controller was compared to the PID controllers tuned by the different evolutionary algorithms using various objective functions proposed in the literature. Dynamic response and a frequency response of the proposed CS based PID controller were examined in detail. Moreover, the disturbance rejection and robustness performance of the tuned controller against parametric uncertainties were obtained, separately. Energy consumptions of the proposed PID controller and the PID controllers tuned by the PSO and ABC algorithms were analyzed thoroughly. Extensive simulation results demonstrate that the CS based PID controller has better control performance in comparison with other PID controllers tuned by the PSO and ABC algorithms. Furthermore, the proposed objective function remarkably improves the PID tuning optimization technique.  相似文献   

10.
In this paper, we consider the H2-optimal control problem subject to the constraint that the resulting controller be strictly positive real. A direct numerical optimization approach is adopted in conjunction with a controller parametrization that is linear in the unknown parameters. The SPR constraint is easily expressed at each frequency in the form of a linear inequality. The method is applied to a numerical example from the literature and good results are achieved. In particular, the proposed method is particularly adept at determining low order controllers.  相似文献   

11.
Model reference adaptive control algorithms with minimal controller synthesis have proven to be an effective solution to tame the behaviour of linear systems subject to unknown or time-varying parameters, unmodelled dynamics and disturbances. However, a major drawback of the technique is that the adaptive control gains might exhibit an unbounded behaviour when facing bounded disturbances. Recently, a minimal controller synthesis algorithm with an integral part and either parameter projection or σ-modification strategies was proposed to guarantee boundedness of the adaptive gains. In this article, these controllers are experimentally validated for the first time by using an electro-mechanical system subject to significant rapidly varying disturbances and parametric uncertainty. Experimental results confirm the effectiveness of the modified minimal controller synthesis methods to keep the adaptive control gains bounded while providing, at the same time, tracking performances similar to that of the original algorithm.  相似文献   

12.
In this paper, we consider the problem of mixed H and passivity control for a class of stochastic nonlinear systems with aperiodic sampling. The system states are unavailable and the measurement is corrupted by noise. We introduce an impulsive observer-based controller, which makes the closed-loop system a stochastic hybrid system that consists of a stochastic nonlinear system and a stochastic impulsive differential system. A time-varying Lyapunov function approach is presented to determine the asymptotic stability of the corresponding closed-loop system in mean-square sense, and simultaneously guarantee a prescribed mixed H and passivity performance. Further, by using matrix transformation techniques, we show that the desired controller parameters can be obtained by solving a convex optimization problem involving linear matrix inequalities (LMIs). Finally, the effectiveness and applicability of the proposed method in practical systems are demonstrated by the simulation studies of a Chua’s circuit and a single-link flexible joint robot.  相似文献   

13.
Multiple-prespecified-dictionary sparse representation (MSR) has shown powerful potential in compressive sensing (CS) image reconstruction, which can exploit more sparse structure and prior knowledge of images for minimization. Due to the popular L1 regularization can only achieve the suboptimal solution of L0 regularization, using the nonconvex regularization can often obtain better results in CS reconstruction. This paper proposes a nonconvex adaptive weighted Lp regularization CS framework via MSR strategy. We first proposed a nonconvex MSR based Lp regularization model, then we propose two algorithms for minimizing the resulting nonconvex Lp optimization problem. According to the fact that the sparsity levels of each regularizers are varying with these prespecified-dictionaries, an adaptive scheme is proposed to weight each regularizer for optimization by exploiting the difference of sparsity levels as prior knowledge. Simulated results show that the proposed nonconvex framework can make a significant improvement in CS reconstruction than convex L1 regularization, and the proposed MSR strategy can also outperforms the traditional nonconvex Lp regularization methodology.  相似文献   

14.
This paper develops a robust state-feedback controller for active suspension system with time-varying input delay and wheelbase preview information in the presence of the parameter uncertainties. By employing system augmentation technique, a multi-objective control optimization model is first established and then this controller design is converted to a static full-state feedback controller design with robust H and generalized H2 performance, wherein the model-dependent control gain is evaluated by transforming the related nonlinear matrix inequalities into their corresponding linear matrix inequality forms based on Lyapunov theory, and then LMI (Linear-Matrix-Inequality) technique is applied to solve and obtain the desired controller. A numerical simulation case is finally provided to reveal the effectiveness and advantages of the proposed controller.  相似文献   

15.
16.
The interconnected large-scale power systems are liable to performance degradation under the presence of sudden small load demands, parameter ambiguity and structural changes. Due to this, to supply reliable electric power with good quality, robust and intelligent control strategies are extremely requisite in automatic generation control (AGC) of power systems. Hence, this paper presents an output scaling factor (SF) based fuzzy classical controller to enrich AGC conduct of two-area electrical power systems. An implementation of imperialist competitive algorithm (ICA) is made to optimize the output SF of fuzzy proportional integral (FPI) controller employing integral of squared error criterion. Initially the study is conducted on a well accepted two-area non-reheat thermal system with and without considering the appropriate generation rate constraint (GRC). The advantage of the proposed controller is illustrated by comparing the results with fuzzy controller and bacterial foraging optimization algorithm (BFOA)/genetic algorithm (GA)/particle swarm optimization (PSO)/hybrid BFOA-PSO algorithm/firefly algorithm (FA)/hybrid FA-pattern search (hFA-PS) optimized PI/PID controller prevalent in the literature. The proposed approach is further extended to a newly emerged two-area reheat thermal-PV system. The superiority of the method is depicted by contrasting the results of GA/FA tuned PI controller. The proposed control approach is also implemented on a multi-unit multi-source hydrothermal power system and its advantage is established by Correlating its results with GA/hFA-PS tuned PI, hFA-PS/grey wolf optimization (GWO) tuned PID and BFOA tuned FPI controllers. Finally, a sensitivity analysis is performed to demonstrate the robustness of the proposed method to broad changes in the system parameters and size and/or location of step load perturbation.  相似文献   

17.
This study investigates the problem of robust tracking control for interconnected nonlinear systems affected by uncertainties and external disturbances. The designed H dynamic output-feedback model reference tracking controller is parameterized in terms of linear matrix inequalities (LMIs), which is formulated within a convex optimization problem readily implementable. The resolution of such a problem, guarantying not only the quadratic stability but also a prescribed performance level of the resulting closed-loop system, enables to calculate concurrently the robust decentralized control and observation gain matrices. The established LMI conditions are computed in a single-step resolution to obtain all the controller/observer parameters and therefore to overcome the problem of iterative algorithm based on a multi-stage resolution leading in most cases to conservative and suboptimal solutions. Numerical simulations on diverse applications ranging from a numerical academic example to coupled inverted double pendulums and a 3-strongly interconnected machine power system are provided to corroborate the merit of the proposed control scheme.  相似文献   

18.
The design of optimal strictly positive real (SPR) controllers using numerical optimization is considered. We focus on how to parameterize the SPR controllers being optimized and the effect of parameterization. Minimization of the closed-loop H2-norm is the optimization objective function. Various single-input single-output and multi-input multi-output controller parameterizations using transfer functions/matrices and state–space equations are considered. Depending on the controller form, constraints are enforced (i) using simple inequalities guaranteeing SPRness, (ii) in the frequency domain or, (iii) by implementing the Kalman–Yakubovich–Popov Lemma. None of the parameterizations we consider foster an observer-based controller structure. Simulated control of a single-link and a two-link flexible manipulators demonstrates the effectiveness of our proposed controller optimization formulations.  相似文献   

19.
Power-system stability improvement by a static synchronous series compensator (SSSC)-based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite-bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. Simulation results are presented and compared with a recently published modern heuristic optimization technique under various disturbances to show the effectiveness and robustness of the proposed approach. The performances of the proposed controllers are also evaluated under N−2 contingency situation.  相似文献   

20.
This paper proposes a fuzzy non-fragile finite frequency H control algorithm for the active suspension system (ASS) of the electric vehicles driven by in-wheel motors with an advanced dynamic vibration absorber (DVA). Firstly, an interval type-2 Takagi-Sugeno (T-S) fuzzy model is established to formulate the nonlinear time-delay ASS with the uncertainties of sprung mass, unsprung mass, suspension stiffness, and tire stiffness. Secondly, a differential evolution (DE) algorithm is adopted to optimize the parameters of vehicle suspension and DVA. Thirdly, a non-fragile finite frequency H control controller is developed under the consideration of controller perturbation and input delay to improve the comprehensive performance of the chassis under the finite frequency external disturbances. Finally, simulation tests are carried out to verify the effectiveness of the proposed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号