首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses the problem of global exponential dissipativity for a class of uncertain discrete-time BAM stochastic neural networks with time-varying delays, Markovian jumping and impulses. By constructing a proper Lyapunov–Krasovskii functional and combining with linear matrix inequality (LMI) technique, several sufficient conditions are derived for verifying the global exponential dissipativity in the mean square of such stochastic discrete-time BAM neural networks. The derived conditions are established in terms of linear matrix inequalities, which can be easily solved by some available software packages. One important feature presented in our paper is that without employing model transformation and free-weighting matrices our obtained result leads to less conservatism. Additionally, three numerical examples with simulation results are provided to show the effectiveness and usefulness of the obtained result.  相似文献   

2.
This paper is concerned with the finite-time stabilization for a class of stochastic BAM neural networks with parameter uncertainties. Compared with the previous references, a continuous stabilizator is designed for stabilizing the states of stochastic BAM neural networks in finite time. Based on the finite-time stability theorem of stochastic nonlinear systems, several sufficient conditions are proposed for guaranteeing the finite-time stability of the controlled neural networks in probability. Meanwhile, the gains of the finite-time controller could be designed by solving some linear matrix inequalities. Furthermore, for the stochastic BAM neural networks with uncertain parameters, the problem of robust finite-time stabilization could also be ensured as well. Finally, two numerical examples are given to illustrate the effectiveness of the obtained theoretical results.  相似文献   

3.
In this paper, a discrete-time interval general BAM bidirectional associative memory neural networks model is considered. By employing the theory of coincidence degree and using Halanay-type inequality technique we establish new sufficient conditions ensuring the existence and global exponential stability of periodic solutions for the discrete-time interval general BAM bidirectional neural networks. The results obtained generalize and improve known results in [23]. An example is provided to show the correctness of our analysis.  相似文献   

4.
In this paper, the asymptotic stability analysis is investigated for a kind of discrete-time bidirectional associative memory (BAM) neural networks with the existence of perturbations namely, stochastic, Markovian jumping and impulses. Based on the theory of stability, a novel Lyapunov–Krasovskii function is constructed and by utilizing the concept of delay partitioning approach, a new linear-matrix-inequality (LMI) based criterion for the stability of such a system is proposed. Furthermore, the derived sufficient conditions are expressed in the structure of LMI, which can be easily verified by a known software package that guarantees the globally asymptotic stability of the equilibrium point. Eventually, a numerical example with simulation is given to demonstrate the effectiveness and applicability of the proposed method.  相似文献   

5.
This paper is concerned with a class of neutral delay BAM neural networks with time-varying delays in leakage terms. Some sufficient conditions are established to ensure the existence and exponential stability for such class of neural networks by employing the exponential dichotomy of linear differential equations, fixed point theorems and differential inequality techniques. An example is provided to show the effectiveness of the theoretical results. The results of this paper are completely new and complementary to the previously known results.  相似文献   

6.
In this paper, the global robust exponential stability problem for a class of uncertain inertial-type BAM neural networks with both time-varying delays is focused through Lagrange sense. The existence of time-varying delays in discrete and distributed terms is explored with the availability of lower and upper bounds of time-varying delays. Firstly, we transform the proposed inertial BAM neural networks to usual one. Secondly, by the aid of LKF, stability theory, integral inequality, some novel sufficient conditions for the global robust exponential stability of the addressed neural networks are obtained in terms of linear matrix inequalities, which can be easily tested in practice by utilizing LMI control toolbox in MATLAB software. Furthermore, many comparisons of proposed work are listed with some existing literatures to get less conservatism. Finally, two numerical examples are provided to demonstrate the advantages and superiority of our theoretical outcomes.  相似文献   

7.
This paper considers the mean-square pinning control problem of fractional stochastic discrete-time complex networks. First, a new fractional stochastic discrete-time complex networks model with stochastic noise is established. Then, some pinning controllers and sufficient conditions are developed for the complex networks. By adopting Lyapunov energy function theory and matrix analysis theory, it proved that the synchronization of the fractional stochastic discrete-time complex networks can be achieved in a mean-square sense via pinning control. In addition, these results are extended to solve the synchronization problem of general fractional discrete-time complex networks without noise. Finally, several numerical examples are given to verify the correctness of the obtained theoretical results.  相似文献   

8.
By using the Razumikhin-type technique, for stochastic discrete-time delay systems, this paper establishes the discrete Razumikhin-type theorems on the pth moment stability, the global pth moment stability and the pth moment exponential stability, respectively. The almost sure exponential stability is also investigated by using the pth moment exponential stability and the Borel–Cantelli lemma. As the applications of t he established theorems, stability of a special class of stochastic discrete-time delay systems, synchronization of the stochastic discrete-time delay dynamical networks and stabilization of a stochastic discrete-time linear delay time invariant system are examined.  相似文献   

9.
In the paper, we are concerned with a class of discontinuous BAM neural networks with hybrid time-varying delays and D operator. Based on the concept of Filippov solution, by means of the differential inclusions theory and the non-smooth analysis theory with Lyapunov-like approach, some new and novel sufficient conditions are derived to guarantee the existence, uniqueness and global exponential stability of almost-periodic solution of our proposed neural network model. To the authors’ knowledge, the results established in the paper are the only available results on the BAM neural networks, connecting the three main characteristics, i.e., discontinuous activation functions, hybrid time-varying delays and D operator. Some previous works in the literature are significantly extend and complement. Finally, two topical simulation examples are given to show the effectiveness of the established main results.  相似文献   

10.
This paper is concerned with the stability of discrete-time high-order neural networks (HONNs) with delays and impulses. Without applying the Lyapunov function, some sufficient conditions, which ensure the exponential stability and asymptotic stability of considered networks involving delays and impulses, are derived based on the fixed point theory. Finally, several numerical examples are given to demonstrate the effectiveness of the obtained results.  相似文献   

11.
This paper is concerned with the stability analysis problem for a class of delayed stochastic recurrent neural networks with both discrete and distributed time-varying delays. By constructing a suitable Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to ensure the global, robust asymptotic stability for the addressed system in the mean square. The conditions obtained here are expressed in terms of LMIs whose feasibility can be checked easily by MATLAB LMI Control toolbox. In addition, two numerical examples with comparative results are given to justify the obtained stability results.  相似文献   

12.
This paper discusses the stabilization criteria for stochastic neural networks of neutral type with both Markovian jump parameters. First, delay-dependent conditions to guarantee the globally exponential stability in mean square and almost surely exponential stability of such systems are obtained by combining an appropriate constructed Lyapunov–Krasovskii functional with the semi-martingale convergence theorem. These conditions are in terms of the linear matrix inequalities (LMIs), which can be some less conservative than some existing results. Second, based on the obtained stability conditions, the state feedback controller is designed. Finally, four numerical examples are provided to illustrate the effectiveness and significant improvement of the proposed method.  相似文献   

13.
In this paper, we investigate first the existence and uniqueness of periodic solution in a general Cohen–Grossberg BAM neural networks with delays on time scales by means of contraction mapping principle. Then by using the existence result of periodic solution and constructing a Lyapunov functional, we discuss the global exponential stability of periodic solution for above neural networks. In the last section, we also give examples to demonstrate the validity of our global exponential stability result of the periodic solution for above neural networks.  相似文献   

14.
This paper investigates a stochastic impulsive coupling protocol for synchronization of linear dynamical networks based on discrete-time sampled-data. The convergence of the networks under the proposed protocol is discussed, and some sufficient conditions are showed to guarantee almost sure exponential synchronization. Moreover, this coupling protocol with a pinning control scheme is developed to lead the state of all nodes to almost sure exponentially converge to a virtual synchronization target. It is shown that the almost sure exponential synchronization can be achieved by only interacting based on the stochastic feedback information at discrete-time instants. Some numerical examples are finally provided to present the effectiveness of the proposed stochastic coupling protocols.  相似文献   

15.
The global synchronization problem of multiple discrete-time memristor-based neural networks (DTMNNs) with stochastic perturbations and mixed delays is studied under impulse-based coupling control, where the coupling control only occurs at discrete impulse times. The impulse-based coupling control will further reduce the communication bandwidth for multiple DTMNNs to achieve coupling synchronization. We construct an array of multiple DTMNNs with stochastic perturbations and mixed delays and propose a novel impulse-based coupling control scheme. By utilizing Lyapunov–Krasovskii functional technique, schur complement technique and linear matrix inequality (LMI) method, some sufficient synchronization conditions depending on stochastic perturbations and mixed delays are established. At the end of this paper, a numerical example is given and the effectiveness of the impulse-based coupling control is illustrated by using MATLAB programming.  相似文献   

16.
In this paper, the discrete-time fuzzy cellular neural network with variable delays and impulses is considered. Based on M-matrix theory and analytic methods, several simple sufficient conditions checking the global exponential stability and the existence of periodic solutions are obtained for the neural networks. Moreover, the estimation for exponential convergence rate index is proposed. The obtained results show that the stability and periodic solutions still remain under certain impulsive perturbations for the neural network with stable equilibrium point and periodic solutions. Some examples with simulations are given to show the effectiveness of the obtained results.  相似文献   

17.
In this paper, the synchronization problem is studied for a class of stochastic discrete-time complex networks with partial mixed impulsive effects. The involving impulsive effects, called partial mixed impulses, can be regarded as local and time-varying impulses, which means that impulses are not only injected into a fraction of nodes in networks but also contain synchronizing and desynchronizing impulses at the same time. In order to handle this case, several mathematical techniques are proposed to tackle mixed impulsive effects in discrete-time dynamical systems. Based on the variation of parameters formula, several sufficient criteria are derived to ensure that synchronization of the addressed networks can be achieved in mean square. The obtained criteria not only rely on the strengths of mixed impulses and the impulsive intervals, but also can reduce conservativeness. Finally, a numerical example is presented to show the effectiveness of our results for neural networks.  相似文献   

18.
This paper investigates the quasi-synchronization of reaction-diffusion neural networks with hybrid coupling and parameter mismatches via sampled-data control technology. First, the models of neural networks with switching parameter and fraction Brownian motion are given. As a result of parameter mismatches, synchronization is normally not possible to realize directly, then the improved Halanay’s inequality is introduced, which is an important lemma to prove that the considered networks realize quasi-synchronization. Furthermore, based on stochastic theory, Lyapunov function method and inequality techniques, some sufficient conditions are derived to guarantee the quasi-synchronization of hybrid coupled neural networks with reaction-diffusion terms driven by fractional Brownian motion. Finally, two simulation examples are given to prove the efficiency of the developed criteria.  相似文献   

19.
This article is dedicated to the investigation of the stability problem of delayed stochastic generalized uncertain impulsive reaction-diffusion neural networks (SGUIRDNNs). Applying Lyapunov second method, several new robust mean square stability criteria on the equilibrium point of the delayed SGUIRDNNs are derived in terms of linear matrix inequalities (LMIs). At last, we provide a numerical example to verify the validity of our findings.  相似文献   

20.
In this paper, the problems of stochastic finite-time stability and stabilization of discrete-time positive Markov jump systems are investigated. To deal with time-varying delays and switching transition probability (STP), stochastic finite-time stability conditions are established under mode-dependent average dwell time (MDADT) switching signal by developing a stochastic copositive Lyapunov-Krasovskii functional approach. Then a dual-mode dependent output feedback controller is designed, thus stochastic finite-time stabilization is achieved based on linear programming technique. Finally, two examples are given to show the effectiveness of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号