首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current microfluidic techniques for isolating circulating tumor cells (CTCs) from cancer patient blood are limited by low capture purity, and dielectrophoresis (DEP) has the potential to complement existing immunocapture techniques to improve capture performance. We present a hybrid DEP and immunocapture Hele-Shaw flow cell to characterize DEP''s effects on immunocapture of pancreatic cancer cells (Capan-1, PANC-1, and BxPC-3) and peripheral blood mononuclear cells (PBMCs) with an anti-EpCAM (epithelial cell adhesion molecule) antibody. By carefully specifying the applied electric field frequency, we demonstrate that pancreatic cancer cells are attracted to immunocapture surfaces by positive DEP whereas PBMCs are repelled by negative DEP. Using an exponential capture model to interpret our capture data, we show that immunocapture performance is dependent on the applied DEP force sign and magnitude, cell surface EpCAM expression level, and shear stress experienced by cells flowing in the capture device. Our work suggests that DEP can not only repel contaminating blood cells but also enhance capture of cancer cell populations that are less likely to be captured by traditional immunocapture methods. This combination of DEP and immunocapture techniques to potentially increase CTC capture purity can facilitate subsequent biological analyses of captured CTCs and research on cancer metastasis and drug therapies.  相似文献   

2.
Isolated mitochondria display a wide range of sizes plausibly resulting from the coexistence of subpopulations, some of which may be associated with disease or aging. Strategies to separate subpopulations are needed to study the importance of these organelles in cellular functions. Here, insulator-based dielectrophoresis (iDEP) was exploited to provide a new dimension of organelle separation. The dielectrophoretic properties of isolated Fischer 344 (F344) rat semimembranosus muscle mitochondria and C57BL/6 mouse hepatic mitochondria in low conductivity buffer (0.025–0.030 S/m) at physiological pH (7.2–7.4) were studied using polydimethylsiloxane (PDMS) microfluidic devices. First, direct current (DC) and alternating current (AC) of 0–50 kHz with potentials of 0–3000 V applied over a channel length of 1 cm were separately employed to generate inhomogeneous electric fields and establish that mitochondria exhibit negative DEP (nDEP). DEP trapping potential thresholds at 0–50 kHz were also determined to be weakly dependent on applied frequency and were generally above 200 V. Second, we demonstrated a separation scheme using DC potentials <100 V to perform the first size-based iDEP sorting of mitochondria. Samples of isolated mitochondria with heterogeneous sizes (150 nm–2 μm diameters) were successfully separated into sub-micron fractions, indicating the ability to isolate mitochondria into populations based on their size.  相似文献   

3.
Cell fusion consists of inducing the formation of a hybridoma cell containing the genetic properties of the progenitor cells. Such an operation is usually performed chemically or electrically. The latter method, named electrofusion, is considered as having a strong potential, due to its efficiency and non-toxicity, but deserves further investigations prior to being applicable for key applications like antibody production and cancer immunotherapy. Indeed, to envision such applications, a high amount of hybrid cells is needed. In this context, we present in this paper a device for massive cell pairing and electrofusion, using a microarray of non-connected conductive pads. The electrofusion chamber––or channel––exposes cells to an inhomogeneous electric field, caused by the pads array, enabling the trapping and pairing of cells with dielectrophoresis (DEP) forces prior to electrofusion. Compared to a mechanical trapping, such electric trapping is fully reversible (on/off handling). The DEP force is contactless and thus eases the release of the produced hybridoma. Moreover, the absence of wire connections on the pads permits the high density trapping and electrofusion of cells. In this paper, the electric field mapping, the effect of metallic pads thickness, and the transmembrane potential of cells are studied based on a numerical model to optimize the device. Electric calculations and experiments were conducted to evaluate the trapping force. The structure was finally validated for cell pairing and electrofusion of arrays of cells. We believe that our approach of fully electric trapping with a simple structure is a promising method for massive production of electrofused hybridoma.  相似文献   

4.
Electrokinetic transport of cylindrical cells under dc electric fields in a straight microfluidic channel is experimentally and numerically investigated with emphasis on the dielectrophoretic (DEP) effect on their orientation variations. A two-dimensional multiphysics model, composed of the Navier–Stokes equations for the fluid flow and the Laplace equation for the electric potential defined in an arbitrary Lagrangian–Eulerian framework, is employed to capture the transient electrokinetic motion of cylindrical cells. The numerical predictions of the particle transport are in quantitative agreement with the obtained experimental results, suggesting that the DEP effect should be taken into account to study the electrokinetic transport of cylindrical particles even in a straight microchannel with uniform cross-sectional area. A comprehensive parametric study indicates that cylindrical particles would experience an oscillatory motion under low electric fields. However, they are aligned with their longest axis parallel to the imposed electric field under high electric fields due to the induced DEP effect.  相似文献   

5.
An analysis has been made of the dielectrophoretic (DEP) forces acting on a spheroidal particle in a traveling alternating electric field. The traveling field can be generated by application of alternating current signals to an octapair electrode array arranged in phase quadrature sequence. The frequency dependent force can be resolved into two orthogonal forces that are determined by the real and the imaginary parts of the Clausius–Mossotti factor. The former is determined by the gradient in the electric field and directs the particle either toward or away from the tip of the electrodes in the electrode array. The force determined by the imaginary component is in a direction along the track of the octapair interdigitated electrode array. The DEP forces are related to the dielectric properties of the particle. Experiments were conducted to determine the DEP forces in such an electrode arrangement using yeast cells (Saccharomyces cervisiate TISTR 5088) with media of various conductivities. Experimental data are presented for both viable and nonviable cells. The dielectric properties so obtained were similar to those previously reported in literature using other DEP techniques.  相似文献   

6.
We present an integrated microfluidic chip for detection of β-amyloid (Aβ) peptides. Aβ peptides are major biomarkers for the diagnosis of Alzheimer''s disease (AD) in its early stages. This microfluidic device consists of three main parts: (1) An immunocapture microcolumn based on self-assembled magnetic beads coated with antibodies specific to Aβ peptides, (2) a nano-porous membrane made of photopolymerized hydrogel for preconcentration, and (3) a microchip electrophoresis (MCE) channel with fluorescent detection. Sub-milliliter sample volume is either mixed off-chip with antibody coated magnetic beads and injected into the device or is injected into an already self-assembled column of magnetic beads in the microchannel. The captured peptides on the beads are then electrokinetically eluted and re-concentrated onto the nano-membrane in a few nano-liters. By integrating the nano-membrane, total assay time was reduced and also off-chip re-concentration or buffer exchange steps were not needed. Finally, the concentrated peptides in the chip are separated by electrophoresis in a polymer-based matrix. The device was applied to the capture and MCE analysis of differently truncated peptides Aβ (1–37, 1–39, 1–40, and 1–42) and was able to detect as low as 25 ng of synthetic Aβ peptides spiked in undiluted cerebrospinal fluid (CSF). The device was also tested with CSF samples from healthy donors. CSF samples were fluorescently labelled and pre-mixed with the magnetic beads and injected into the device. The results indicated that Aβ1-40, an important biomarker for distinguishing patients with frontotemporal lobe dementia from controls and AD patients, was detectable. Although the sensitivity of this device is not yet enough to detect all Aβ subtypes in CSF, this is the first report on an integrated or semi-integrated device for capturing and analyzing of differently truncated Aβ peptides. The method is less demanding and faster than the conventional Western blotting method currently used for research.  相似文献   

7.
8.
The capability of the AC dielectrophoresis (DEP) for on-chip capture and chaining of microalgae suspended in freshwaters was evaluated. The effects of freshwater composition as well as the electric field voltage, frequency, and duration, on the dielectrophoretic response of microalga Chlamydomonas reinhardtii were characterized systematically. Highest efficiency of cell alignment in one-dimensional arrays, determined by the percentage of cells in chain and the chain length, was obtained at AC-field of 20 V mm−1 and 1 kHz applied for 600 s. The DEP response and cell alignment of C. reinhardtii in water sampled from lake, pond, and river, as well as model media were affected by the chemical composition of the media. In the model media, the efficiency of DEP chaining was negatively correlated to the conductivity of the cell suspensions, being higher in suspensions with low conductivity. The cells suspended in freshwaters, however, showed anomalously high chaining at long exposure times. High concentrations of nitrate and dissolved organic matter decrease cell chaining efficiency, while phosphate and citrate concentrations increase it and favor formation of longer chains. Importantly, the application of AC-field had no effect on algal autofluorescence, cell membrane damage, or oxidative stress damages in C. reinhardtii.  相似文献   

9.
Human mesenchymal stem cells (hMSCs) have three key properties that make them desirable for stem cell therapeutics: differentiation capacity, trophic activity, and ability to self-renew. However, current separation techniques are inefficient, time consuming, expensive, and, in some cases, alter hMSCs cellular function and viability. Dielectrophoresis (DEP) is a technique that uses alternating current electric fields to spatially separate biological cells based on the dielectric properties of their membrane and cytoplasm. This work implements the first steps toward the development of a continuous cell sorting microfluidic device by characterizing native hMSCs dielectric signatures and comparing them to hMSCs morphologically standardized with a polymer. A quadrapole Ti-Au electrode microdevice was used to observe hMSC DEP behaviors, and quantify frequency spectra and cross-over frequency of hMSCs from 0.010–35 MHz in dextrose buffer solutions (0.030 S/m and 0.10 S/m). This combined approach included a systematic parametric study to fit a core-shell model to the DEP spectra over the entire tested frequency range, adding robustness to the analysis technique. The membrane capacitance and permittivity were found to be 2.2 pF and 2.0 in 0.030 S/m and 4.5 pF and 4.1 in 0.10 S/m, respectively. Elastin-like polypeptide (ELP-) polyethyleneimine (PEI) copolymer was used to control hMSCs morphology to spheroidal cells and aggregates. Results demonstrated that ELP-PEI treatment controlled hMSCs morphology, increased experiment reproducibility, and concurrently increased hMSCs membrane permittivity to shift the cross-over frequency above 35 MHz. Therefore, ELP-PEI treatment may serve as a tool for the eventual determination of biosurface marker-dependent DEP signatures and hMSCs purification.  相似文献   

10.
The instrument described here is an all-electronic dielectrophoresis (DEP) cytometer sensitive to changes in polarizability of single cells. The important novel feature of this work is the differential electrode array that allows independent detection and actuation of single cells within a short section ( ~ 300?μm) of the microfluidic channel. DEP actuation modifies the altitude of the cells flowing between two altitude detection sites in proportion to cell polarizability; changes in altitude smaller than 0.25 μm can be detected electronically. Analysis of individual experimental signatures allows us to make a simple connection between the Clausius-Mossotti factor (CMF) and the amount of vertical cell deflection during actuation. This results in an all-electronic, label-free differential detector that monitors changes in physiological properties of the living cells and can be fully automated and miniaturized in order to be used in various online and offline probes and point-of-care medical applications. High sensitivity of the DEP cytometer facilitates observations of delicate changes in cell polarization that occur at the onset of apoptosis. We illustrate the application of this concept on a population of Chinese hamster ovary (CHO) cells that were followed in their rapid transition from a healthy viable to an early apoptotic state. DEP cytometer viability estimates closely match an Annexin V assay (an early apoptosis marker) on the same population of cells.  相似文献   

11.
In this study, a continuous flow dielectrophoresis (DEP) microfluidic chip was fabricated and utilized to sort out the microalgae (C. vulgaris) with different lipid contents. The proposed separation scheme is to allow that the microalgae with different lipid contents experience different negative or no DEP force at the separation electrode pair under the pressure-driven flow. The microalgae that experience stronger negative DEP will be directed to the side channel while those experience less negative or no DEP force will pass through the separation electrode pair to remain in the main channel. It was found that the higher the lipid content inside the microalgae, the higher the crossover frequency. Separation of the microalgae with 13% and 21% lipid contents, and 24% and 30%–35% lipid contents was achieved at the operating frequency 7 MHz, and 10 MHz, respectively. Moreover, separation can be further verified by measurement of the fluorescence intensity of the neutral lipid inside the sorted algal cells.  相似文献   

12.
The present work demonstrates the use of a dielectrophoretic lab-on-a-chip device in effectively separating different cancer cells of epithelial origin for application in circulating tumor cell (CTC) identification. This study uses dielectrophoresis (DEP) to distinguish and separate MCF-7 human breast cancer cells from HCT-116 colorectal cancer cells. The DEP responses for each cell type were measured against AC electrical frequency changes in solutions of varying conductivities. Increasing the conductivity of the suspension directly correlated with an increasing frequency value for the first cross-over (no DEP force) point in the DEP spectra. Differences in the cross-over frequency for each cell type were leveraged to determine a frequency at which the two types of cell could be separated through DEP forces. Under a particular medium conductivity, different types of cells could have different DEP behaviors in a very narrow AC frequency band, demonstrating a high specificity of DEP. Using a microfluidic DEP sorter with optically transparent electrodes, MCF-7 and HCT-116 cells were successfully separated from each other under a 3.2 MHz frequency in a 0.1X PBS solution. Further experiments were conducted to characterize the separation efficiency (enrichment factor) by changing experimental parameters (AC frequency, voltage, and flow rate). This work has shown the high specificity of the described DEP cell sorter for distinguishing cells with similar characteristics for potential diagnostic applications through CTC enrichment.  相似文献   

13.
A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.225 S∕m), apple juice (0.225 S∕m), and milk (0.525 S∕m). Depending on the conductivity of the medium, the Joule heating produces electrothermal flow (ETF), which continuously circulates and transports the particles to the DEP capture sites. Combination of the ETF and n-DEP results in different particle capture efficiencies as a function of the conductivity. Utilizing 20 μm height DEP chambers, “almost complete” and rapid particle capture from lower conductivity (0.05 S∕m) medium is observed. Using DEP chambers above 150 μm in height, the onset of a global fluid motion for high conductivity media is observed. This motion enhances particle capture on the electrodes at the center of the DEP chamber. The n-DEP electrodes are designed to have well defined electric field minima, enabling sample concentration at 1000 distinct locations within the chip. The electrode design also facilitates integration of immunoassay and other surface sensors onto the particle capture sites for rapid detection of target micro-organisms in the future.  相似文献   

14.
Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs.  相似文献   

15.
In this paper, a detailed numerical and experimental investigation into the optimisation of hydrodynamic micro-trapping arrays for high-throughput capture of single polystyrene (PS) microparticles and three different types of live cells at trapping times of 30 min or less is described. Four different trap geometries (triangular, square, conical, and elliptical) were investigated within three different device generations, in which device architecture, channel geometry, inter-trap spacing, trap size, and trap density were varied. Numerical simulation confirmed that (1) the calculated device dimensions permitted partitioned flow between the main channel and the trap channel, and further, preferential flow through the trap channel in the absence of any obstruction; (2) different trap shapes, all having the same dimensional parameters in terms of depth, trapping channel lengths and widths, main channel lengths and widths, produce contrasting streamline plots and that the interaction of the fluid with the different geometries can produce areas of stagnated flow or distorted field lines; and (3) that once trapped, any motion of the trapped particle or cell or a shift in its configuration within the trap can result in significant increases in pressures on the cell surface and variations in the shear stress distribution across the cell’s surface. Numerical outcomes were then validated experimentally in terms of the impact of these variations in device design elements on the percent occupancy of the trapping array (with one or more particles or cells) within these targeted short timeframes. Limitations on obtaining high trap occupancies in the devices were shown to be primarily a result of particle aggregation, channel clogging and the trap aperture size. These limitations could be overcome somewhat by optimisation of these device design elements and other operational variables, such as the average carrier fluid velocity. For example, for the 20 μm polystyrene microparticles, the number of filled traps increased from 32% to 42% during 5–10 min experiments in devices with smaller apertures. Similarly, a 40%–60% reduction in trapping channel size resulted in an increase in the amount of filled traps, from 0% to almost 90% in 10 min, for the human bone marrow derived mesenchymal stem cells, and 15%–85% in 15 min for the human embryonic stem cells. Last, a reduction of the average carrier fluid velocity by 50% resulted in an increase from 80% to 92% occupancy of single algae cells in traps. Interestingly, changes in the physical properties of the species being trapped also had a substantial impact, as regardless of the trap shape, higher percent occupancies were observed with cells compared to single PS microparticles in the same device, even though they are of approximately the same size. This investigation showed that in microfluidic single cell capture arrays, the trap shape that maximizes cell viability is not necessarily the most efficient for high-speed single cell capture. However, high-speed trapping configurations for delicate mammalian cells are possible but must be optimised for each cell type and designed principally in accordance with the trap size to cell size ratio.  相似文献   

16.
This Special Topic section is on dielectrophoresis, a growing area of widespread interest and relevance to the microfluidics and nanofluidics community.There was a time when the arrival of a telegram from the local post office would foreshadow a step-function change in one’s equilibrium. An internet service provider can now deliver the same effect, as illustrated by an unexpected e-mail from Leslie Yeo inquiring if I would “be interested in guest editing a special issue of Biomicrofluidics on recent advances in dielectrophoresis (DEP).” Flattery directed towards vanity can produce interesting results—which I hope this special issue of Biomicrofluidics demonstrates. The rationale for this special issue is the belief of the journal’s Editors (Dr. Chia Chang and Dr. Leslie Yeo) that dielectrophoresis is a growing area of widespread interest and relevance to the microfluidics and nanofluidics community. Papers, both fundamental and applied, were solicited from the leaders working across this broad interdisciplinary area of research. I was delighted by the positive responses of those whose invited contributions appear in this special issue—efforts certainly not motivated by vanity but through enthusiasm for the subject. Some of those invited to contribute were unable to do so because of other demands on their time. Ongoing advances being made in DEP, especially in its various applications, will surely merit another special issue in the future and hopefully include contributions from those unable to do so now.Two of the papers in this special issue address fundamental aspects of dielectrophoresis (DEP), namely the influences on DEP from electrical double-layers and from particle-particle interactions. Consideration of electrical double layers associated with charged particle surfaces is particularly important for nanoparticles because their effective polarizabilities, associated with field-induced dynamics of the counterions and co-ions in the double layer, can dominate over the intrinsic polarizability of the particle itself. This can influence, for example, to what extent the observation of changes in the DEP crossover frequency (marking the transition between positive and negative DEP) can be relied upon in new immunoassays based on the DEP behavior of functionalized nanoparticles. By considering the electrodynamics of double layers, Basuray et al.1 propose a theory to predict how the DEP crossover frequency will vary as a function of particle size and the ionic strength of the suspending electrolyte. In their paper, Sancho et al.2 derive a theoretical model to describe how particle-particle interactions (e.g., “pearl-chaining”) influence the DEP crossover frequency value. This model also describes well the changes in electrorotation and a newly observed precession effect as particles approach each other under the influence of a rotating field.DEP at the nanoscale is also addressed in contributions from the groups of Ralph Hölzel, Junya Suehiro, and Karan Kaler. Thus, Henning et al.3 describe a new method, based on the measurement of capacitance changes between planar microelectrodes, for the automatic acquisition of the DEP properties of nanoparticles without the need for labeling protocols or visual observations. Suehiro4 describes how DEP can be employed as a bottom-up approach for fabricating nanomaterial-based devices such as a carbon nanotube gas sensor and a ZnO nanowire photosensor. Kaler et al.5 describe how the DEP manipulation of miniscule amounts of polar aqueous samples, a method known as liquid-DEP, can be used for on-chip bioassays, such as nucleic acid analysis, and through parallel sample processing offer the potential for conducting automated multiplexed assays. The use of DEP to selectively trap and separate cells has been investigated over many years, and contributions from the groups of Hywel Morgan, Ana Valero, Masau Washizu, and Gerard Markx describe the latest advances and applications. Thomas et al.6 describe a new automated DEP cell trap design for the isolation, concentration, separation, and recovery of human osteoblast-like cells from a heterogeneous population. Recovery of small populations of human osteoblast-like cells with a purity of 100% is demonstrated. A cell-sorting device, based on the opposition of DEP forces that discriminates between cell types according to such properties as their membrane permittivity and cytoplasm conductivity, is described by Valeroet al.7 The versatility of the device is demonstrated by synchronizing a yeast cell culture at a particular phase of the cell cycle. Gel et al.8 describe a DEP-assisted cell trapping method for fusing pairs of cells in an array of micro-orifices. This method produces not only a high yield of viable cell fusants, but also allows for subsequent study of postfusion cell development. Zhu et al.9 describe a DEP-based microfluidic separation system in which dead and active cells can be collected from a given cell suspension, whilst at the same time eluting dormant cells. In the second paper from Gerard Markx’s group, Zhu et al.10 demonstrate that the rate-limiting resuscitation of a colony of dormant bacteria is determined by the diffusion of a resuscitation-promoting factor into the colony interior. This study involved the artificial engineering of different sizes and shapes of bacterial aggregates using DEP forces. Finally, in my own contribution,11 I have attempted to summarize the growing output of DEP publications in terms of their contributions to the theory, technology, and applications of DEP.  相似文献   

17.
In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape.  相似文献   

18.
For cancer patients, the enumeration of rare circulating tumor cells (CTCs) in peripheral blood is a strong prognostic indicator of the severity of the cancer; for the general population, the capture of CTCs is needed for use as a clinical tool for cancer screening, early detection, and treatment assessment. Here, we present a fast, high-purity (∼90%) and high-efficiency (>90%) method for the segregation and undamaged recovery of CTCs using a spatially gradated microfluidic chip. Further, by lysing the red blood cells we achieved not only a significant reduction in the overall processing time but also mitigated the blood clogging problem commonly encountered in microfluidic-based CTC isolation systems. To clinically validate the chip, we employed it to detect and capture CTCs from 10 liver cancer patients. Positive CTC enumeration was observed in all the blood samples, and the readings ranged from a low of 1–2 CTCs (1 patient) to a high of >20 CTCs (2 patients) with the balance having 3–20 CTCs per 3-ml blood sample. The work here indicates that our system can be developed for use in cancer screening, metastatic assessment, and chemotherapeutic response and for pharmacological and genetic evaluation of single CTCs.  相似文献   

19.
Demand for analysis of rare cells such as circulating tumor cells in blood at the single molecule level has recently grown. For this purpose, several cell separation methods based on antibody-coated micropillars have been developed (e.g., Nagrath et al., Nature 450, 1235–1239 (2007)). However, it is difficult to ensure capture of targeted cells by these methods because capture depends on the probability of cell-micropillar collisions. We developed a new structure that actively exploits cellular flexibility for more efficient capture of a small number of cells in a target area. The depth of the sandwiching channel was slightly smaller than the diameter of the cells to ensure contact with the channel wall. For cell selection, we used anti-epithelial cell adhesion molecule antibodies, which specifically bind epithelial cells. First, we demonstrated cell capture with human promyelocytic leukemia (HL-60) cells, which are relatively homogeneous in size; in situ single molecule analysis was verified by our rolling circle amplification (RCA) method. Then, we used breast cancer cells (SK-BR-3) in blood, and demonstrated selective capture and cancer marker (HER2) detection by RCA. Cell capture by antibody-coated microchannels was greater than with negative control cells (RPMI-1788 lymphocytes) and non-coated microchannels. This system can be used to analyze small numbers of target cells in large quantities of mixed samples.  相似文献   

20.
We present dual-mode, on-demand droplet routing in a multiple-outlet microfluidic device using an oil-based magnetic fluid. Magnetite (Fe3O4) nanoparticle-contained oleic acid (MNOA) was used as a carrier phase for droplet generation and manipulation. The water-in-MNOA droplets were selectively distributed in a curved microchannel with three branches by utilizing both a hydrodynamic laminar flow pattern and an external magnetic field. Without the applied magnetic field, the droplets travelled along a hydrodynamic centerline that was displaced at each bifurcating junction. However, in the presence of a permanent magnet, they were repelled from the centerline and diverted into the desired channel when the repelled distance exceeded the minimum offset allocated to the channel. The repelled distance, which is proportional to the magnetic field gradient, was manipulated by controlling the magnet''s distance from the device. To evaluate routing performance, three different sizes of droplets with diameters of 63, 88, and 102 μm were directed into designated outlets with the magnet positioned at varying distances. The result demonstrated that the 102-μm droplets were sorted with an accuracy of ∼93%. Our technique enables on-demand droplet routing in multiple outlet channels by simply manipulating magnet positions (active mode) as well as size-based droplet separation with a fixed magnet position (passive mode).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号