首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
已知两圆方程:⊙O1:x2 y2 D1x E1y F1=0,⊙O2:x2 y2 D2x E2y F2=0(其中两圆不共圆心,将两圆方程左右分别相减得l:(D1-D2)x (E1-E2)y (F1-F2)=0.结论1当两圆相交时,l即为公共弦所在的直线方程.不妨设两圆的交点为A、B,则A、B一定同时满足⊙O1和⊙O2的方程,故A、B必定满足两圆方程相减所得的直线方程l,由两点确定一条直线,l即为公共弦AB所在直线方程.结论2当两圆相切时,l即为公切线方程.公切点为P,则P同时满足两圆方程,故P一定在l上,而l的一个方向向量为a=(E1-E2,D2-D1),两圆圆心连线所在直线的一个方向向量为b=(D2-D1,E2-E1).…  相似文献   

2.
已知圆O1:x2+ y2+ D1x+ E1y+ F1 =0,圆O2:x2+y2+ D2x+E2y+ F2 =0,D1≠D2,E1≠E2,两圆方程相减得(D1-D2)x+(E1-E2)y+F1-F2 =0,此方程代表一条直线,记作l,叫做两圆的根轴.根据两圆的位置关系,可以得到直线l如下有关结论[1].  相似文献   

3.
<正>我们知道两个圆的方程相减所得的方程表示一条直线,但是这条直线具有什么性质?本文作一粗浅的探讨.设两个圆C1,C2的方程分别为(x-a)2+(y-b)2=r21,(x-c)2+(y-d)2=r22.两圆方程相减,得a2+b2-2ax-2by-r21=c2+d2-2cx-2dy-r22,(*)记上述方程(*)所表示的直线为l.由于两圆C1与C2的圆心分别为(a,b)与(c,d),通过分析直线l与两圆连心线的倾斜角或斜率,  相似文献   

4.
人教版全日制普高教材《数学》第二册(上),求圆的切线方程,就出现一道例题,一道练习题,一道复习参考题.下面笔者就经过点(x,y),求圆的切线方程给出几种解法,并比较最佳求法.已知圆的方程(x?a)2+(y?b)2=r2,求经过点M(x0,y0)的切线方程.分析根据圆的切线性质,过圆上一点有且只有一条直线和圆相切,过圆外一点有且只有两条直线和圆相切.解法一不妨设切线的斜率为k(若k无解,则表示相应切线斜率不存在,以下同),则切线方程为y?y0=k(x?x0),把y=kx?(kx0?y0)代入(x?a)2+(y?b)2=r2,得222(x?a)+[kx?(kx0?y0+b)]=r,整理得22(1+k)x?2[k(kx0?y0+b)+a]x+222…  相似文献   

5.
一、步步为营逐步消参 例1 求与圆x2 y2-2x=0相外切,且与直线x (√3y)=0相切于点M(3,-(√3))的圆的方程. 思路一:设所求圆的方程为:(xa)2 (y-b)2=r2(a、b、r为参数).  相似文献   

6.
在高二解析几何教材的圆锥曲线一章中有这样的一个结论 :若P(x0 ,y0 )是圆 :x2 + y2 =r2 上的一点 ,那么过该点的圆的切线方程是x0 x + y0 y =r2 .(证明见教材 ) .问题 :若点P(x0 ,y0 )在圆x2 + y2 =r2 外(或圆内 )时 ,直线l:x0 x + y0 y =r2 是什么样的直线 ?与圆x2 + y2 =r2 有什么关系 ?不妨设点P(x0 ,y0 )不在坐标轴上 .直线l:x0 x + y0 y =r2 的斜率是kl =-x0y0(y0 ≠ 0 ) ,而kOP =y0x0(x0 ≠ 0 ) .∵klkOP =-1,∴直线l⊥OP .圆心O(0 ,0 )到直线x0 x + y0 y=r2 的距离为d =r2x20 + y20=r2|OP|.①由①可见 ,直线l与圆的关系由|…  相似文献   

7.
苏教版必修二课本第77页有这样一道习题:已知两条直线alz+61y+1=O和a2x+62y+1=0都过定点A(1,2),求过两点P,(a1,b1),P2(a2,b2)的直线方程.本题的解法是:因为两直线都过A(1,2),所以a,+2b1+1=0,a2+2b2+1=0.由于(a1,b1)和(a2,b2)均适合方程x+2y+1=O,所以所求直线方程为X+2y+1=0.这种求直线方程的方法不同于我们求直线方程的常规方法,  相似文献   

8.
直线与圆是解析几何知识的基础,也是近几年高考的热点内容,因此,熟悉、掌握一些直线与圆综合问题十分必要. 例1已知圆C与圆C1:x2+y2-2x—=0外切,并且与直线l:x+ 3~(1/2)y=0相切与点P(3,-3~(1/2)).求此圆C的方程. 求圆C的方程要先确定圆心的坐标和半径的长.可设圆C的圆心为C(a,b),半径为r,因为圆C与圆C1相外切,且圆C1的半径为1,所以两圆的圆心距|CC1|=r+1.又因为与直线l相切与点P,所以圆C的圆心在过P点与直线l垂直的直线上,且圆心到直线l的距离等于半径r,依据圆的几何性质即可求出参数a,b、r 解:设所求圆的圆心为C(a,b),半径为r.  相似文献   

9.
两道代数题的新证明   总被引:1,自引:0,他引:1  
1.若 a,b∈ R,且 a 1- b2 b 1- a2=1,求证 :a2 b2 =12.实数 x,y,z满足 x y z=a,x2 y2 z2 =a22 ,(a>0 ) ,证明 x,y,z∈ [0 ,23a].这是两道常见的代数题 ,证法都颇多 .本文利用同一种方法再给出它们一种新颖证法 .证明  1.构造直线 l:x 1- b2 y1- a2 =1,显然点 P(a,b)在直线 l上 ,l不过原点 O,所以原点 O到直线 l的距离不大于 | OP| ,即1(1- b2 ) (1- a2 ) ≤ a2 b2 ,整理得  (a2 b2 ) 2 - 2 (a2 b2 ) 1≤ 0 ,即    (a2 b2 - 1) 2≤ 0 ,所以 ,a2 b2 =1.2 .构造直线 l:x y (z- a) =0 ,由条件知点 P(x,y)在…  相似文献   

10.
考点解读直线和圆点击考点一直线方程的五种形式(1)斜截式:y=kx b;(2)点斜式:y-y0=k(x-x0);(3)两点式:(y-y1)/(y2-y1)=x-x1/(x2-x1);(4)截距式:x/a y/b=1;(5)一般式:Ax By C=0.注意直线方程的四种特殊  相似文献   

11.
<正>一、基础知识,要点回顾1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(xa2)2+(y-b2)2=r22(r2>0).二、题型分类,深度剖析题型一:直线与圆的位置关系例1已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;  相似文献   

12.
错在哪里     
1.一些圆与两个坐标轴同时相切,求圆心的轨迹方程。解:设圆的方程是(x-a)~2 (y-b)~2=r~2,它与x轴y轴同时相切的条件是|a|=|b|=r,那么圆心坐标(a,b)是方程x±y=0的解,因此圆心轨迹方程是x±y=0。本题错在没有把原点排除在外。 2.已知A(x_1,y_1)是圆x~2 y~2=r~2上的一点,求证,与圆相切于A点的切线方程是x_1x y_1y=r~2。  相似文献   

13.
在平面几何中,设O是圆中定弦AB的中点,过O作两条任意弦CD和GH,若CH和GD分别交AB于P和Q,则OP=OQ(如图)。这就是著名的“蝴蝶定理”。笔者认为上述结论,可以推广到圆锥曲线中,为此,先证明以下引理:引理:以圆锥曲线的一条对称轴为y轴,轴上的点O为原点建立直角坐标系,若过点O的直线l1:y=k1x交圆锥曲线于两点C(x1,y1)、D(x2,y2),直线l2:y=k2x交圆锥曲线于两点G(x3,y3)、H(x4,y4),则有k1x1x2(x3+x4)=k2x3x4(x1+x2)………………………(!)证明:由圆锥曲线的对称轴为y轴,可设圆锥曲线的一般方程为ax2+cy2+dy+f=05(a≠0)……………(1)将直…  相似文献   

14.
思考步骤(1)把y=ax2看成y=a(x+0)2+0,从中可直观地看出此函数的对称轴为直线x=0(即y轴),y最值=0.(2)把给出的二次函数y=ax2+bx+c通过配方变成y=[a(x+b/(2a))~2]+(4ac-b~2)/(4a),然后找出对称轴方程为x=-b/2a,y最值=(4ac-b~2)/4a.  相似文献   

15.
性质1椭圆x2/a2+y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是椭圆上的点,直线OM与ON的斜率之积为-b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2+y2/(1+λ)b21的椭圆;双曲线x2/a2-y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是双曲线上的点,直线OM与ON的斜率之积为b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2-y2/(1+λ)b2=1的双曲线;圆x2+y2=r2,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是圆上的点,直线OM与ON的斜率之积为-1,则动点P的轨迹是方程为x2 +y2=(1+λ2)r2的圆.  相似文献   

16.
对于椭圆x2/a2+y2/b2=1,令x’=x/a,y’=y/b,则椭圆方程变为:x’2+y’2=. 1,此为单位圆方程.这样,椭圆问题就可充分利用圆的性质来解决了.举例说明. 例1若直线l:x+2y+t=0与椭圆C:x2/9+y2/4=1相交于两点,求t 的取值范围. 解:令x=3x’,y=2y’,则椭圆C和直线l分别变成圆C’:x'2+y'2= 1和直线l':3x’+4y’+t=0.  相似文献   

17.
笔者近日在学习和研究圆锥曲线时,发现圆锥曲线与其切线有关的一个优美的性质,现表述如下,以期与同仁分享. 性质1 已知A,B是椭圆C:x2/a2+y2/b2=1(a>b>0)上不同的两点(不同时在坐标轴上,或kOA·kOB≠-b2/a2),O为椭圆C的中心,椭圆C在点A,B处的切线分别与直线OB,OA相交于P,Q两点.则AB∥PQ. 证明:如图1,设A(x1,y1),B(x2,y2).则切线AP,BQ的方程分别为:x1x/a2+y1y/b2=1,x2x/a2+y2y/b2=1.直线OA,OB的方程分别为:y=y1/x1x,y=y2/x2x由方程组{x2x/a2+y2y/b2=1 y=y1/x1x,解得点Q的坐标为xQ=a2+b2+x1/b2x1x2+a2y1y2,yQ=a2+b2+y1/b2x1x2+a2y1y2.  相似文献   

18.
圆是椭圆的一个极端图形,而圆的性质已为大家所熟知,如何把椭圆方程转化为圆方程呢? 笔者经过探究得到以下结论: 设椭圆方程为x2/a2 y2/b2=1,令x=(a/b)x’,则得圆方程:(x’)2 y2=b2,若令y=(b/a)y’,则得圆方程:x2 (y’)2=a2.用这个结论解题,不仅思路清晰,和谐优美, 而且解题过程简捷明快有新意,可以收到事半功  相似文献   

19.
笔者在教学圆一节时,有学生提出了两个很有意思的问题:1.已知圆的方程x2+y2=r2,求经过圆上一点M(x0,y0)的切线方程。这是课本中一道可作结论用的例题,答案是x0x+y0y=r2。他们提出如果点M不在圆上,直线x0x+y0y=r2。又是客观存在的,那么它与圆有怎样的关系呢?  相似文献   

20.
引理1:椭圆b2x2 a2y2=a2b2(a>b>0)上A、B两点的切线交于P(x0,y0),则AB的直线方程为b2x0x a2y0y=a2b2证明:设A(x1,y1),B(x2,y2),则过A,B的切线方程分别为b2x1y a2y1y=a2b2,b2x2y a2y1y=a2b2,因P点是两切线的公共点,故(x0,y0)同时满足上述两方程,应有b2x0x1 a2y0y1=a2b2,b2x0x2 a  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号